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5G Toolbox Product Description
Simulate, analyze, and test 5G communications systems

5G Toolbox provides standard-compliant functions and reference examples for the modeling,
simulation, and verification of 5G New Radio (NR) communications systems. The toolbox supports
link-level simulation, golden reference verification, conformance testing, and test waveform
generation.

With the toolbox you can configure, simulate, measure, and analyze end-to-end 5G NR
communications links. You can modify or customize the toolbox functions and use them as reference
models for implementing 5G systems and devices.

The toolbox provides functions and reference examples to help you characterize uplink and downlink
baseband specifications and simulate the effects of RF designs and interference sources on system
performance. You can generate waveforms and customize test benches, either programmatically or
interactively using the Wireless Waveform Generator app. With these waveforms, you can verify that
your designs, prototypes, and implementations comply with the 3GPP 5G NR specifications.
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What Is 5G New Radio?
New Radio (NR) is the air interface supporting the next generation of mobile communication,
commonly referred to as fifth generation or 5G.

The predecessors of 5G NR are GSM, UMTS, and LTE, also referred to as second generation (2G),
third generation (3G), and fourth generation (4G) technologies, respectively. GSM primarily enabled
voice calls. The redesigned interfaces of UMTS and LTE enabled and gradually improved mobile
broadband connectivity with high data rates and high efficiency.

5G NR continues on the path of LTE by enabling much higher data rates and much higher efficiency
for mobile broadband. However, as a response to the demands of networked society, the scope of 5G
NR goes beyond mobile broadband connectivity. The main requirement of 5G NR is to enable wireless
connectivity everywhere, at any time to anyone and anything.

The wide range of use cases that drive 5G NR are classified by three main scenarios.

• Enhanced mobile broadband (eMBB) — This scenario is still the most important usage scenario
that addresses human-centric communications. eMBB use cases have various challenges. For
example, hot spots require higher data rates, higher user density, and a need for high capacity.
Wide area coverage stresses mobility and seamless user experience with lower requirements on
data rate and user density.

• Massive machine type communications (mMTC) — This scenario addresses pure machine-centric
use cases characterized by a large number of connected devices. Typically, the data rate
requirement of mMTC applications is low. However, the use cases demand a high connection
density locally, low cost, and long battery life.

• Ultra reliable and low latency communications (URLLC) — This scenario covers both human-
centric communication and critical machine-type communication (C-MTC) that demand low
latency, reliability, and high availability. Typical URLLC use cases include 3-D gaming, self driving
cars, mission-critical applications, remote medical surgery, and wireless control of industrial
equipment.

This classification is based on presently foreseen use cases and identifies key capabilities of 5G NR.
Based on these capabilities, the 5G NR interface is designed to easily adapt to unforeseen use cases
that will evolve and emerge over time.

Scope of 5G Toolbox
The 5G NR specification is developed by the Third Generation Partnership Project (3GPP). The first
release of the standard was frozen in mid-2018 as 3GPP 5G NR Release 15.

5G Toolbox provides implementations for a subset of the 5G NR physical layer specification and
channel model specifications. The following diagram highlights the scope of 5G Toolbox in terms of
the addressed specifications and their connectivity.

 What Is 5G New Radio?
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References
[1] Dalman, E., S. Parkvall, and J. Sköld. 4G, LTE-Advanced Pro and The Road to 5G. Kidlington,

Oxford: Academic Press, 2016.

See Also

More About
• “5G Toolbox and the 5G NR Protocol Layers” on page 1-5
• “What Is LTE?” (LTE Toolbox)

External Websites
• https://www.3gpp.org
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5G Toolbox and the 5G NR Protocol Layers
The 5G NR radio access network is comprised of these protocol entities:

• Service data adaptation protocol (SDAP)
• Packet data convergence protocol (PDCP)
• Radio link control (RLC)
• Medium access control (MAC)
• Physical layer (PHY)

The SDAP protocol is new in 5G NR compared to the LTE protocol stack. SDAP handles the new QoS
framework of the 5G System (in the 5G Core). SDAP applies also to LTE when connected to the 5G
Core. The introduction of SDAP enables end-to-end QoS framework that works in both directions.

To meet the desired key capabilities of 5G NR, the other layers of the stack provide various
enhancements over their LTE counterparts. The PDCP, RLC, and MAC protocols handle tasks such as
header compression, ciphering, segmentation and concatenation, and multiplexing and
demultiplexing. PHY handles coding and decoding, modulation and demodulation, and antenna
mapping.

This figure shows the 5G NR user plane protocol stack for user equipment (UE) and the NR radio
access network node (gNB). 5G Toolbox supports the 5G NR physical layer, including physical
channels and signals. The toolbox also supports interfacing with portions of the RLC and MAC layers,
including transport channels and logical channels.

 5G Toolbox and the 5G NR Protocol Layers
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Downlink Channel Mapping
5G NR system downlink data follows the mapping between logical channels, transport channels, and
physical channels, as indicated in the diagram. 5G Toolbox provides the red-highlighted downlink
functionality for physical channels, transport channels, and control information.

1 About 5G
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For more details, see “Downlink Channels” or the specific downlink channel:

• “Downlink Physical Signals”
• “Downlink Physical Channels”
• “Downlink Transport Channels”
• “Downlink Control Information”

Uplink Channel Mapping
5G NR system uplink data follows the mapping between logical channels, transport channels, and
physical channels, as indicated in the diagram. 5G Toolbox provides the red-highlighted uplink
functionality for physical channels, transport channels, and control information.

 5G Toolbox and the 5G NR Protocol Layers

1-7



For more details, see “Uplink Channels” or the specific uplink channel:

• “Uplink Physical Signals”
• “Uplink Physical Channels”
• “Uplink Transport Channels”
• “Uplink Control Information”

References
[1] 3GPP TS 38.211. “NR; Physical channels and modulation.” 3rd Generation Partnership Project;

Technical Specification Group Radio Access Network.

[2] 3GPP TS 38.212. “NR; Multiplexing and channel coding.” 3rd Generation Partnership Project;
Technical Specification Group Radio Access Network.

[3] 3GPP TS 38.300. “NR; NR and NG-RAN Overall Description.” 3rd Generation Partnership Project;
Technical Specification Group Radio Access Network.

See Also

More About
• “What Is 5G New Radio?” on page 1-3
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External Websites
• https://www.3gpp.org
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Synchronization Signal Blocks and Bursts

This example shows how to generate a synchronization signal block (SSB) and generate multiple
SSBs to form a synchronization signal burst (SS burst). The channels and signals that form a
synchronization signal block (primary and secondary synchronization signals, physical broadcast
channel) are created and mapped into a matrix representing the block. Finally a matrix representing
a synchronization signal burst is created, and each synchronization signal block in the burst is
created and mapped into the matrix.

SS/PBCH block

TS 38.211 Section 7.4.3.1 defines the Synchronization Signal / Physical Broadcast Channel (SS/
PBCH) block as 240 subcarriers and 4 OFDM symbols containing the following channels and signals:

• Primary synchronization signal (PSS)
• Secondary synchronization signal (SSS)
• Physical broadcast channel (PBCH)
• PBCH demodulation reference signal (PBCH DM-RS)

In other documents, for example TS 38.331, the SS/PBCH is termed "synchronization signal block" or
"SS block".

Create a 240-by-4 matrix representing the SS/PBCH block:

ssblock = zeros([240 4])

ssblock = 240×4

     0     0     0     0
     0     0     0     0
     0     0     0     0
     0     0     0     0
     0     0     0     0
     0     0     0     0
     0     0     0     0
     0     0     0     0
     0     0     0     0
     0     0     0     0
      ⋮

Primary Synchronization Signal (PSS)

Create the PSS for a given cell identity:

ncellid = 17;
pssSymbols = nrPSS(ncellid)

pssSymbols = 127×1

    -1
    -1
    -1
    -1
    -1
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    -1
     1
     1
     1
    -1
      ⋮

The variable pssSymbols is a column vector containing the 127 BPSK symbols of the PSS.

Create the PSS indices:

pssIndices = nrPSSIndices;

The variable pssIndices is a column vector of the same size as pssSymbols. The value in each
element of pssIndices is the linear index of the location in the SS/PBCH block to which the
corresponding symbols in pssSymbols should be mapped. Therefore the mapping of the PSS symbols
to the SS/PBCH block can be performed with a simple MATLAB assignment, using linear indexing to
select the correct elements of the SS/PBCH block matrix. Note that a scaling factor of 1 is applied to
the PSS symbols, to represent βPSS in TS 38.211 Section 7.4.3.1.1:

ssblock(pssIndices) = 1 * pssSymbols;

Plot the SS/PBCH block matrix to show the location of the PSS:

imagesc(abs(ssblock));
caxis([0 4]);
axis xy;
xlabel('OFDM symbol');
ylabel('Subcarrier');
title('SS/PBCH block containing PSS');

 Synchronization Signal Blocks and Bursts
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Secondary Synchronization Signal (SSS)

Create the SSS for the same cell identity as configured for the PSS:

sssSymbols = nrSSS(ncellid)

sssSymbols = 127×1

    -1
     1
    -1
    -1
    -1
     1
    -1
     1
    -1
     1
      ⋮

Create the SSS indices and map the SSS symbols to the SS/PBCH block, following the same pattern
used for the PSS. Note that a scaling factor of 2 is applied to the SSS symbols, to represent βSSS in TS
38.211 Section 7.4.3.1.2:

sssIndices = nrSSSIndices;
ssblock(sssIndices) = 2 * sssSymbols;

2 Tutorials
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The default form of the indices is 1-based linear indices, suitable for linear indexing of MATLAB
matrices like ssblock as already shown. However, the NR standard documents describe the OFDM
resources in terms of OFDM subcarrier and symbol subscripts, using 0-based numbering. For
convenient cross-checking with the NR standard, the indices functions accept options to allow the
indexing style (linear index versus subscript) and base (0-based versus 1-based) to be selected:

sssSubscripts = nrSSSIndices('IndexStyle','subscript','IndexBase','0based')

sssSubscripts = 127x3 uint32 matrix

   56    2    0
   57    2    0
   58    2    0
   59    2    0
   60    2    0
   61    2    0
   62    2    0
   63    2    0
   64    2    0
   65    2    0
      ⋮

It can be seen from the subscripts that the SSS is located in OFDM symbol 2 (0-based) of the SS/
PBCH block, starting at subcarrier 56 (0-based).

Plot the SS/PBCH block matrix again to show the locations of the PSS and SSS:

imagesc(abs(ssblock));
caxis([0 4]);
axis xy;
xlabel('OFDM symbol');
ylabel('Subcarrier');
title('SS/PBCH block containing PSS and SSS');
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Physical Broadcast Channel (PBCH)

The PBCH carries a codeword of length 864 bits, created by performing BCH encoding of the master
information block (MIB). For more information on BCH coding, see the functions nrBCH and
nrBCHDecode and their use in the “NR Cell Search and MIB and SIB1 Recovery” example. Here a
PBCH codeword consisting of 864 random bits is used:

cw = randi([0 1],864,1);

The PBCH modulation consists of the following steps as described in TS 38.211 Section 7.3.3:

• Scrambling
• Modulation
• Mapping to physical resources

Scrambling and modulation

Multiple SS/PBCH blocks are transmitted across half a frame, as described in the cell search
procedure in TS 38.213 Section 4.1. Each SS/PBCH block is given an index from 0…L− 1, where L is
the number SS/PBCH blocks in the half frame. The scrambling sequence for the PBCH is initialized
according to the cell identity ncellid, and the subsequence used to scramble the PBCH codeword
depends on the value v, 2 or 3 LSBs of SS/PBCH block index, as described in TS 38.211 Section
7.3.3.1. In this example, v = 0 is used. The function nrPBCH creates the appropriate subsequence of
the scrambling sequence, performs scrambling and then performs QPSK modulation:
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v = 0;
pbchSymbols = nrPBCH(cw,ncellid,v)

pbchSymbols = 432×1 complex

  -0.7071 + 0.7071i
  -0.7071 + 0.7071i
  -0.7071 + 0.7071i
  -0.7071 - 0.7071i
   0.7071 + 0.7071i
  -0.7071 + 0.7071i
  -0.7071 + 0.7071i
   0.7071 - 0.7071i
   0.7071 + 0.7071i
   0.7071 + 0.7071i
      ⋮

Mapping to resource elements

Create the PBCH indices and map the PBCH symbols to the SS/PBCH block. Note that a scaling
factor of 3 is applied to the PBCH symbols, to represent βPBCH in TS 38.211 Section 7.4.3.1.3:

pbchIndices = nrPBCHIndices(ncellid);
ssblock(pbchIndices) = 3 * pbchSymbols;

Plot the SS/PBCH block matrix again to show the locations of the PSS, SSS and PBCH:

imagesc(abs(ssblock));
caxis([0 4]);
axis xy;
xlabel('OFDM symbol');
ylabel('Subcarrier');
title('SS/PBCH block containing PSS, SSS and PBCH');

 Synchronization Signal Blocks and Bursts
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PBCH Demodulation Reference Signal (PBCH DM-RS)

The final component of the SS/PBCH block is the DM-RS associated with the PBCH. Similar to the
PBCH, the DM-RS sequence used derives from the SS/PBCH block index and is configured using the
variable iSSB described in TS 38.211 Section 7.4.1.4.1. Here iSSB = 0 is used:

ibar_SSB = 0;
dmrsSymbols = nrPBCHDMRS(ncellid,ibar_SSB)

dmrsSymbols = 144×1 complex

   0.7071 - 0.7071i
   0.7071 + 0.7071i
  -0.7071 + 0.7071i
  -0.7071 + 0.7071i
   0.7071 - 0.7071i
   0.7071 + 0.7071i
   0.7071 - 0.7071i
  -0.7071 - 0.7071i
  -0.7071 - 0.7071i
   0.7071 + 0.7071i
      ⋮

Note that TS 38.211 Section 7.4.1.4.1 defines an intermediate variable iSSB which is defined
identically to v described previously for the PBCH.
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Create the PBCH DM-RS indices and map the PBCH DM-RS symbols to the SS/PBCH block. Note that
a scaling factor of 4 is applied to the PBCH DM-RS symbols, to represent β PBCH

DM− RS in TS 38.211
Section 7.4.3.1.3:

dmrsIndices = nrPBCHDMRSIndices(ncellid);
ssblock(dmrsIndices) = 4 * dmrsSymbols;

Plot the SS/PBCH block matrix again to show the locations of the PSS, SSS, PBCH and PBCH DM-RS:

imagesc(abs(ssblock));
caxis([0 4]);
axis xy;
xlabel('OFDM symbol');
ylabel('Subcarrier');
title('SS/PBCH block containing PSS, SSS, PBCH and PBCH DM-RS');

Generating an SS burst

An SS burst, consisting of multiple SS/PBCH blocks, can be generated by creating a larger grid and
mapping SS/PBCH blocks into the appropriate locations, with each SS/PBCH block having the correct
parameters according to the location.

Create SS burst grid

In the NR standard, OFDM symbols are grouped into slots, subframes and frames. As defined in TS
38.211 Section 4.3.1, there are 10 subframes in a frame, and each subframe has a fixed duration of
1ms. Each SS burst has a duration of half a frame, and therefore spans 5 subframes:

 Synchronization Signal Blocks and Bursts
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nSubframes = 5

nSubframes = 5

TS 38.211 Section 4.3.2 defines each slot as having 14 OFDM symbols (for normal cyclic prefix
length) and this is fixed:

symbolsPerSlot = 14

symbolsPerSlot = 14

However, the number of slots per subframe varies and is a function of the subcarrier spacing. As the
subcarrier spacing increases, the OFDM symbol duration decreases and therefore more OFDM
symbols can be fitted into the fixed subframe duration of 1ms.

There are 5 subcarrier spacing configurations μ = 0 . . . 4, with the corresponding subcarrier spacing
being 15 ⋅ 2μ kHz. In this example we shall use μ = 1, corresponding to 30 kHz subcarrier spacing:

mu = 1

mu = 1

The number of slots per subframe is 2μ, as doubling the subcarrier spacing halves the OFDM symbol
duration. Note that definition of a slot in NR is different from LTE: a subframe in LTE consists of 2
slots of 7 symbols (for normal cyclic prefix) whereas in NR, a subframe using the LTE subcarrier
spacing (μ = 0, 15 kHz) consists of 1 slot of 14 symbols.

Calculate the total number of OFDM symbols in an SS burst:

nSymbols = symbolsPerSlot * 2^mu * nSubframes

nSymbols = 140

Create an empty grid for the whole SS burst :

ssburst = zeros([240 nSymbols]);

Define SS block pattern

The pattern of SS/PBCH blocks within an SS burst is indirectly specified by the cell search procedure
in TS 38.213, which describes the locations in which the UE may detect an SS/PBCH block. There are
5 block patterns, Case A - Case E, which have different subcarrier spacings and are applicable for
different carrier frequencies.

Create the indices of the first symbols in the candidate SS/PBCH blocks for block pattern Case B,
which has L = 8 blocks per burst:

n = [0, 1];
firstSymbolIndex = [4; 8; 16; 20] + 28*n;
firstSymbolIndex = firstSymbolIndex(:).'

firstSymbolIndex = 1×8

     4     8    16    20    32    36    44    48
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Create SS burst content

Now a loop can be created which generates each SS block and assigns it into the appropriate location
of the SS burst. Note the following:

• The code re-uses various variables created earlier in this example (PSS, SSS, and 4 sets of indices)
• The PSS and SSS are independent of the SS/PBCH block index, so can be mapped into the SS

block before the loop
• The PBCH indices and PBCH DM-RS indices are independent of the SS/PBCH block index, so do

not need updated in the loop
• iSSB, iSSB and v are set up according to the rules in TS 38.211 Sections 7.3.3.1 and 7.4.1.4.1 for

the case of L = 8.
• Each channel / signal has been scaled in order to give them different colors in the final plot

ssblock = zeros([240 4]);
ssblock(pssIndices) = pssSymbols;
ssblock(sssIndices) = 2 * sssSymbols;

for ssbIndex = 1:length(firstSymbolIndex)
    
    i_SSB = mod(ssbIndex - 1,8);
    ibar_SSB = i_SSB;
    v = i_SSB;
    
    pbchSymbols = nrPBCH(cw,ncellid,v);
    ssblock(pbchIndices) = 3 * pbchSymbols;
    
    dmrsSymbols = nrPBCHDMRS(ncellid,ibar_SSB);
    ssblock(dmrsIndices) = 4 * dmrsSymbols;
    
    ssburst(:,firstSymbolIndex(ssbIndex) + (0:3)) = ssblock;
    
end

Finally, plot the SS burst content:

imagesc(abs(ssburst));
caxis([0 4]);
axis xy;
xlabel('OFDM symbol');
ylabel('Subcarrier');
title('SS burst, block pattern Case B');

 Synchronization Signal Blocks and Bursts
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See Also
Functions
nrPBCH | nrPBCHDMRS | nrPBCHDMRSIndices | nrPBCHIndices | nrSSS | nrSSSIndices | nrPSS |
nrPSSIndices

More About
• “NR Cell Search and MIB and SIB1 Recovery”
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Modeling Downlink Control Information

This example describes the downlink control information (DCI) processing for the 5G New Radio
communications system. Starting from a random DCI message, it models the message encoding
followed by the physical downlink control channel (PDCCH) processing on the transmit end.
Corresponding receiver components recover the transmitted control information elements.

System Parameters

Set parameters for a UE-specific search space.

rng(211);           % Set RNG state for repeatability

nID = 23;           % pdcch-DMRS-ScramblingID
rnti = 100;         % C-RNTI for PDCCH in a UE-specific search space
K = 64;             % Number of DCI message bits
E = 288;            % Number of bits for PDCCH resources

DCI Encoding

The DCI message bits based on a downlink format are encoded using the nrDCIEncode function,
which includes the stages of CRC attachment, polar encoding and rate matching.

dciBits = randi([0 1],K,1,'int8');
dciCW = nrDCIEncode(dciBits,rnti,E);

PDCCH Symbol Generation

The encoded DCI bits (a codeword) are mapped onto the physical downlink control channel (PDCCH)
using the nrPDCCH function which generates the scrambled, QPSK-modulated symbols. The
scrambling accounts for the user-specific parameters.

sym = nrPDCCH(dciCW,nID,rnti);

For NR, the PDCCH symbols are then mapped to the resource elements of an OFDM grid which also
has PDSCH, PBCH and other reference signal elements. These are followed by OFDM modulation and
transmission over a channel. For simplicity, we directly pass the PDCCH symbols over an AWGN
channel next.

The following schematic depicts the components used in the example for DCI processing.

 Modeling Downlink Control Information
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Channel

The PDCCH symbols are transmitted over an AWGN channel with a specified SNR, accounting for the
coding rate and QPSK modulation.

EbNo = 3;                       % in dB
bps = 2;                        % bits per symbol, 2 for QPSK
EsNo = EbNo + 10*log10(bps);
snrdB = EsNo + 10*log10(K/E);

rxSym = awgn(sym,snrdB,'measured');

PDCCH Decoding

The received symbols are demodulated with known user-specific parameters and channel noise
variance using the nrPDCCHDecode function. The soft output is the log-likelihood ratio for each bit in
the codeword.

noiseVar = 10.^(-snrdB/10);     % assumes unit signal power
rxCW = nrPDCCHDecode(rxSym,nID,rnti,noiseVar);

DCI Decoding

An instance of the received PDCCH codeword is then decoded by the nrDCIDecode function. This
includes the stages of rate recovery, polar decoding and CRC decoding to recover the transmitted
information bits.

listLen = 8;                    % polar decoding list length
[decDCIBits,mask] = nrDCIDecode(rxCW,K,listLen,rnti);

isequal(mask,0)

ans = logical
   1

isequal(decDCIBits,dciBits)

ans = logical
   1

For a known recipient, the C-RNTI information aids decoding. The output mask value of 0 indicates
no errors in the transmission. For the chosen system parameters, the decoded information matches
the transmitted information bits.

See Also
Functions
nrDCIDecode | nrDCIEncode | nrPDCCHDecode | nrPDCCH

More About
• “Downlink Control Processing and Procedures”
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5G New Radio Polar Coding

This example highlights the new polar channel coding technique chosen for 5G New Radio (NR)
communications system. Of the two main types of code constructions specified by 3GPP, this example
models the CRC-Aided Polar (CA-Polar) coding scheme. This example describes the main components
of the polar coding scheme with individual components for code construction, encoding and decoding
along-with rate-matching. It models a polar-coded QPSK-modulated link over AWGN and presents
Block-Error-Rate results for different message lengths and code rates for the coding scheme.

Introduction

The selection of polar codes as the channel coding technique for control channels for 5G NR
communications system has proven the merits of Arikan's [ 1 ] discovery and will establish their
application in commercial systems [ 6 ]. Based on the concept of channel polarization, this new
coding family is capacity achieving as opposed to just capacity approaching. With better or
comparable performance than LDPC and turbo codes, it supersedes the tail-biting convolutional
codes used in LTE systems for control channels. It is applied for downlink and uplink control
information (DCI/UCI) for the enhanced mobile broadband (eMBB) use case, as well as the broadcast
channel (BCH). Alternatively, the channel coding scheme for data channels for eMBB is specified to
be flexible LDPC for all block sizes.

This example highlights the components to enable a polar coding downlink simulation using QPSK
modulation over an AWGN channel. In the following sections, the individual polar coding components
are further detailed.

s = rng(100);       % Seed the RNG for repeatability

Specify the code parameters used for a simulation.

% Code parameters
K = 54;             % Message length in bits, including CRC, K > 30
E = 124;            % Rate matched output length, E <= 8192

EbNo = 0.8;         % EbNo in dB
L = 8;              % List length, a power of two, [1 2 4 8]
numFrames = 10;     % Number of frames to simulate
linkDir = 'DL';     % Link direction: downlink ('DL') OR uplink ('UL')

Polar Encoding

The following schematic details the transmit-end processing for the downlink, with relevant
components and their parameters highlighted.
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For the downlink, the input bits are interleaved prior to polar encoding. The CRC bits appended at
the end of the information bits are thus distributed for the CA-Polar scheme. This interleaving is not
specified for the uplink.

The polar encoding uses an SNR-independent method where the reliability of each subchannel is
computed offline and the ordered sequence stored for a maximum code length [ 6 ]. The nested
property of polar codes allows this sequence to be used for any code rate and all code lengths smaller
than the maximum code length.

This sequence is computed for given rate-matched output length, E, and information length, K, by the
function nrPolarEncode, which implements the non-systematic encoding of the input K bits.

if strcmpi(linkDir,'DL')
    % Downlink scenario (K >= 36, including CRC bits)
    crcLen = 24;      % Number of CRC bits for DL, Section 5.1, [6]
    poly = '24C';     % CRC polynomial
    nPC = 0;          % Number of parity check bits, Section 5.3.1.2, [6]
    nMax = 9;         % Maximum value of n, for 2^n, Section 7.3.3, [6]
    iIL = true;       % Interleave input, Section 5.3.1.1, [6]
    iBIL = false;     % Interleave coded bits, Section 5.4.1.3, [6]
else
    % Uplink scenario (K > 30, including CRC bits)
    crcLen = 11;
    poly = '11';
    nPC = 0;
    nMax = 10;
    iIL = false;
    iBIL = true;
end

The following schematic details the transmit-end processing for the uplink, for a payload size greater
than 19 bits and no code-block segmentation, with relevant components and their parameters
highlighted.

Rate Matching and Rate Recovery

The polar encoded set of bits (N) are rate-matched to output the specified number of bits (E) for
resource element mapping [ 7 ]. The coded bits are sub-block interleaved and passed to a circular
buffer of length N. Depending on the desired code rate and selected values of K, E, and N, either of
repetition (E >= N), and puncturing or shortening (E < N) is realized by reading the output bits from
the buffer.

• For puncturing, E bits are taken from the end
• For shortening, E bits are taken from the start
• For repetition, E bits are repeated modulo N.
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For the downlink, the selected bits are passed on to the modulation mapper, while for the uplink, they
are further interleaved prior to mapping. The rate-matching processing is implemented by the
function nrRateMatchPolar.

At the receiver end, rate recovery is accomplished for each of the cases

• For puncturing, corresponding LLRs for the bits removed are set to zero
• For shortening, corresponding LLRs for the bits removed are set to a large value
• For repetition, the set of LLRs corresponding to first N bits are selected.

The rate-recovery processing is implemented by the function nrRateRecoverPolar.

R = K/E;                          % Effective code rate
bps = 2;                          % bits per symbol, 1 for BPSK, 2 for QPSK
EsNo = EbNo + 10*log10(bps);
snrdB = EsNo + 10*log10(R);       % in dB
noiseVar = 1./(10.^(snrdB/10));

% Channel
chan = comm.AWGNChannel('NoiseMethod','Variance','Variance',noiseVar);

Polar Decoding

The implicit CRC encoding of the downlink (DCI or BCH) or uplink (UCI) message bits dictates the
use of the CRC-Aided Successive Cancellation List Decoding (CA-SCL) [ 3 ] as the channel decoder
algorithm. It is well known that CA-SCL decoding can outperform turbo or LDPC codes [ 4 ] and this
was one of the major factors in the adoption of polar codes by 3GPP.

Tal & Vardy [ 2 ] describe the SCL decoding algorithm in terms of likelihoods (probabilities).
However, due to underflow, the inherent computations are numerically unstable. To overcome this
issue, Stimming et.al. [ 5 ] offer the SCL decoding solely in the log-likelihood ratio (LLR) domain. The
list decoding is characterized by the L parameter, which represents the number of most likely
decoding paths retained. At the end of the decoding, the most likely code-path among the L paths is
the decoder output. As L is increased, the decoder performance also improves, however, with a
diminishing-returns effect.

For an input message which is concatenated with a CRC, CA-SCL decoding prunes out any of the
paths for which the CRC is invalid, if at least one path has the correct CRC. This additional insight in
the final path selection improves the performance further, when compared to SCL decoding. For the
downlink, a CRC of 24 bits is used, while for the uplink CRCs of 6 and 11 bits are specified, which
vary on the value of K.

The decoder is implemented by the function nrPolarDecode, which supports all three CRC lengths.
The decoder function also accounts for the input bit interleaving specified at the transmitter for the
downlink, prior to outputting the decoded bits.

% Error meter
ber = comm.ErrorRate;

Frame Processing Loop

This section shows how the prior described components for polar coding are used in a Block Error
Rate (BLER) simulation. The simulation link is highlighted in the following schematic.
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For each frame processed, the following steps are performed:

• K-crcLen random bits are generated,
• A CRC is computed and appended to these bits
• The CRC appended bits are polar encoded to the mother code block length
• Rate-matching is performed to transmit E bits
• The E bits are QPSK modulated
• White Gaussian Noise of specified power is added
• The noisy signal is soft QPSK demodulated to output LLR values
• Rate recovery is performed accounting for either of puncturing, shortening or repetition
• The recovered LLR values are polar decoded using the CA-SCL algorithm, including

deinterleaving.
• Off the decoded K bits, the first K-crcLen bits are compared with those transmitted to update the

BLER and bit-error-rate (BER) metrics.

At the end of the simulation, the two performance indicators, BLER and BER, are reported.

numferr = 0;
for i = 1:numFrames

    % Generate a random message
    msg = randi([0 1],K-crcLen,1);

    % Attach CRC
    msgcrc = nrCRCEncode(msg,poly);

    % Polar encode
    encOut = nrPolarEncode(msgcrc,E,nMax,iIL);
    N = length(encOut);

    % Rate match
    modIn = nrRateMatchPolar(encOut,K,E,iBIL);
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    % Modulate
    modOut = nrSymbolModulate(modIn,'QPSK');

    % Add White Gaussian noise
    rSig = chan(modOut);

    % Soft demodulate
    rxLLR = nrSymbolDemodulate(rSig,'QPSK',noiseVar);

    % Rate recover
    decIn = nrRateRecoverPolar(rxLLR,K,N,iBIL);

    % Polar decode
    decBits = nrPolarDecode(decIn,K,E,L,nMax,iIL,crcLen);

    % Compare msg and decoded bits
    errStats = ber(double(decBits(1:K-crcLen)), msg);
    numferr = numferr + any(decBits(1:K-crcLen)~=msg);

end

disp(['Block Error Rate: ' num2str(numferr/numFrames) ...
      ', Bit Error Rate: ' num2str(errStats(1)) ...
      ', at SNR = ' num2str(snrdB) ' dB'])

rng(s);     % Restore RNG

Block Error Rate: 0, Bit Error Rate: 0, at SNR = 0.20002 dB

Results

To get meaningful results, simulations have to be run for a longer duration. Using scripts which
encapsulate the above processing into a function that supports C-code generation, the following
results for different code rates and message lengths are presented for both link directions with QPSK
modulation.
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The above results were generated by simulating, for each SNR point, up to 1000 frame errors or a
maximum of 100e3 frames, whichever occurred first.

The BLER performance results indicate the suitability of polar codes in a communication link and
their implicit support for rate-compatibility at the bit-level granularity.

The use of C-code generation tools for the components reduces the execution time, a key concern for
simulations. The C-code generation is enabled by MATLAB Coder™.

Summary and Further Exploration

This example highlights one of the polar coding schemes (CRC-Aided Polar) specified by 3GPP for
New Radio control channel information (DCI, UCI) and broadcast channel (BCH). It shows the use of
components for all stages of the processing (encoding, rate-matching, rate-recovery and decoding)
and uses them in a link with QPSK over an AWGN channel. Highlighted performance results for
different code rates and message lengths show agreement to published trends, within parametric and
simulation assumption variations.

Explore simple parameter variations (K, E, L) and their effect on BLER performance. The polar coding
functions are implemented as open MATLAB® code to enable their application for both downlink/
uplink control information and broadcast channel. The CA-Polar scheme is applicable for both

 5G New Radio Polar Coding

2-21



• Downlink, for all message lengths, and
• Uplink, for K > 30, with crcLen = 11, nPC = 0, nMax = 10, iIL = false, and iBIL =

true.

Refer to “Modeling Downlink Control Information” on page 2-13 and “NR Cell Search and MIB and
SIB1 Recovery” examples, for the use of polar coding functions within the DCI and BCH functions
respectively.

The highlighted polar coding functions also support the Parity-Check polar coding construction and
encoding. This is applicable for the uplink with UCI payloads in range 18 <= K <= 25. This is
supported by the uplink control coding functions nrUCIEncode and nrUCIDecode, which include
code-block segmentation as well for appropriate values of K and E.
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See Also
Functions
nrPolarDecode | nrPolarEncode | nrRateRecoverPolar | nrRateMatchPolar

More About
• “Modeling Downlink Control Information” on page 2-13
• “NR Cell Search and MIB and SIB1 Recovery”
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LDPC Processing for DL-SCH and UL-SCH

This example highlights the low-density parity-check (LDPC) coding chain for the 5G NR downlink
and uplink shared transport channels (DL-SCH and UL-SCH).

Shared Channel Parameters

The example uses the DL-SCH to describe the processing, which also applies to the UL-SCH.

Select parameters for a transport block transmitted on the downlink shared (DL-SCH) channel.

rng(210);              % Set RNG state for repeatability

A = 10000;             % Transport block length, positive integer
rate = 449/1024;       % Target code rate, 0<R<1
rv = 0;                % Redundancy version, 0-3
modulation = 'QPSK';   % Modulation scheme, QPSK, 16QAM, 64QAM, 256QAM
nlayers = 1;           % Number of layers, 1-4 for a transport block

Based on the selected transport block length and target coding rate, DL-SCH coding parameters are
determined using the nrDLSCHInfo function.

% DL-SCH coding parameters
cbsInfo = nrDLSCHInfo(A,rate);
disp('DL-SCH coding parameters')
disp(cbsInfo)

DL-SCH coding parameters
    CRC: '24A'
      L: 24
    BGN: 1
      C: 2
    Lcb: 24
      F: 244
     Zc: 240
      K: 5280
      N: 15840

DL-SCH supports multi-codeword transmission (i.e. two transport blocks) while UL-SCH supports
only a single codeword. UL-SCH also supports pi/2-BPSK modulation in addition to those listed above
for DL-SCH.

Transport Block Processing using LDPC Coding

Data delivered from the MAC layer to the physical layer is termed as a transport block. For the
downlink shared channel (DL-SCH), a transport block goes through the processing stages of:

• CRC attachment,
• Code block segmentation and code block CRC attachment,
• Channel coding using LDPC,
• Rate matching and code block concatenation
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before being passed on to the physical downlink shared channel (PDSCH) for scrambling, modulation,
layer mapping and resource/antenna mapping. Each of these stages is performed by a function as
shown next.

% Random transport block data generation
in = randi([0 1],A,1,'int8');

% Transport block CRC attachment
tbIn = nrCRCEncode(in,cbsInfo.CRC);

% Code block segmentation and CRC attachment
cbsIn = nrCodeBlockSegmentLDPC(tbIn,cbsInfo.BGN);

% LDPC encoding
enc = nrLDPCEncode(cbsIn,cbsInfo.BGN);

% Rate matching and code block concatenation
outlen = ceil(A/rate);
chIn = nrRateMatchLDPC(enc,outlen,rv,modulation,nlayers);

The output number of bits from the rate matching and code block concatenation process must match
the bit capacity of the PDSCH, based on the available resources. In this example, as the PDSCH is not
modeled, this is set to achieve the target code rate based on the transport block size previously
selected.

Similar processing applies for the UL-SCH, where the physical uplink shared channel (PUSCH) is the
recipient of the UL-SCH codeword. The following schematics depict the processing for the two
channels.
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Refer to nrDLSCH and nrULSCH System objects that encapsulate the processing per transport block,
with additional support for retransmissions.

Channel

A simple bipolar channel with no noise is used for this example. With the full PDSCH or PUSCH
processing, one can consider fading channels, AWGN and other RF impairments as well.

chOut = double(1-2*(chIn));

Receive Processing using LDPC Decoding

The receive end processing for the DL-SCH channel comprises of the corresponding dual operations
to the transmit end that include

• Rate recovery
• LDPC decoding
• Code block desegmentation and CRC decoding
• Transport block CRC decoding

Each of these stages is performed by a function as shown next.

% Rate recovery
raterec = nrRateRecoverLDPC(chOut,A,rate,rv,modulation,nlayers);

% LDPC decoding
decBits = nrLDPCDecode(raterec,cbsInfo.BGN,25);

% Code block desegmentation and CRC decoding
[blk,blkErr] = nrCodeBlockDesegmentLDPC(decBits,cbsInfo.BGN,A+cbsInfo.L);

disp(['CRC error per code-block: [' num2str(blkErr) ']'])

% Transport block CRC decoding
[out,tbErr] = nrCRCDecode(blk,cbsInfo.CRC);

disp(['Transport block CRC error: ' num2str(tbErr)])
disp(['Recovered transport block with no error: ' num2str(isequal(out,in))])

CRC error per code-block: [0  0]
Transport block CRC error: 0
Recovered transport block with no error: 1

As the displays indicate, there are no CRC errors at both the code-block and transport block levels.
This leads to the transport block being recovered and decoded with no errors, as expected, for a
noiseless channel.
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Refer to nrDLSCHDecoder and nrULSCHDecoder System objects that encapsulate the receive
processing per codeword, with additional soft-combining of retransmissions for improved
performance.

See Also
Functions
nrLDPCEncode | nrRateMatchLDPC | nrRateRecoverLDPC | nrLDPCDecode | nrDLSCHInfo |
nrCRCEncode | nrCRCDecode | nrCodeBlockSegmentLDPC | nrCodeBlockDesegmentLDPC |
nrULSCHInfo | nrDLSCHDecoder | nrDLSCH | nrULSCH | nrULSCHDecoder

More About
• “NR PDSCH Throughput”
• “NR PUSCH Throughput”
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Generate Wireless Waveform in Simulink Using App-Generated
Block

This example shows how to configure and use the block that is generated using the Export to
Simulink capability that is available in the Wireless Waveform Generator app.

Introduction

The Wireless Waveform Generator app is an interactive tool for creating, impairing, visualizing,
and exporting waveforms. You can export the waveform to your workspace or to a .mat or .bb file.
You can also export the waveform generation parameters to a runnable MATLAB® script or a
Simulink® block. You can use the exported Simulink block to reproduce your waveform in Simulink.
This example shows how to use the Export to Simulink capability of the app and how to configure
the exported block to generate waveforms in Simulink.

Although this example focuses on exporting an OFDM waveform, the same process applies for all of
the supported waveform types.

Export Wireless Waveform Configuration to Simulink

Open the Wireless Waveform Generator app by clicking the app icon on the Apps tab, under
Signal Processing and Communications. Alternatively, enter wirelessWaveformGenerator at
the MATLAB command prompt.

In the Waveform Type section, select an OFDM waveform by clicking OFDM. In the left-most pane
of the app, adjust any configuration parameters for the selected waveform. Then export the
configuration by clicking Export in the app toolstrip and selecting Export to Simulink.
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The Export to Simulink option creates a Simulink block, which outputs the selected waveform when
you run the Simulink model. The block is exported to a new model if no open models exist.

modelName = 'WWGExport2SimulinkBlock';
open_system(modelName);

The Form output after final data value by block parameter specifies the output after all of the
specified signal samples are generated. The value options for this parameter are Cyclic
repetition and Setting to zero. The Cyclic repetition option repeats the signal from the
beginning after it reaches the last sample in the signal. The Setting to zero option generates
zero-valued outputs for the duration of the simulation after generating the last frame of the signal.
The Waveform sample rate (Fs) and Waveform length block parameters are derived from the
waveform configuration that is available in the Code tab of the Mask Editor dialog box. For further
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information about the block parameters, see Waveform From Wireless Waveform Generator App. This
figure shows the parameters of the exported block.

close_system(modelName);

Connect a Spectrum Analyzer block to the exported block.

modelName = 'WWGExport2SimulinkModel';
open_system(modelName);

Simulate the model to visualize the waveform using the current configuration.

sim(modelName);
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The Spectrum Analyzer block inherits the Waveform sample rate (Fs) parameter, which is 64 MHz.

close_system(modelName);

Modify Wireless Waveform Configuration

When you run the Simulink model, the exported block outputs the waveform generated in the Code
tab of the Mask Editor dialog box for the block. The MATLAB code that initializes the waveform in
this tab corresponds to the configuration that you selected in the Wireless Waveform Generator
app before exporting the block. To modify the configuration of the waveform, choose one of these
options:

• Open the Wireless Waveform Generator app, select the configuration of your choice, and export
a new block. This option provides interaction with an app interface instead of MATLAB code,
parameter range validation during the parameterization process, and visualization of the
waveform before running the Simulink model.

• Update the configuration parameters that are available in the Code tab of the Mask Editor dialog
box of the exported block. This option requires modifying the MATLAB code available in this tab so
that the parameter range validation occurs only when you apply the changes. This option does not
provide visualization of the waveform before running the Simulink model. Modifying the waveform
parameters using this option is not recommended if you are not familiar with the MATLAB code
that generates the selected waveform.
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You can update the configuration in the Code tab of the Mask Editor. To open the Mask Editor, click
the exported block and press Ctrl+M.

Use the MATLAB code that is available in the Code tab to update the parameters of your choice. For
example, set the subcarrier spacing, scs, to 1,500,000 Hz.
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Click OK to apply the changes and close the Mask Editor dialog box. Simulate the model to visualize
the updated waveform.

modelName = 'WWGExport2SimulinkModelSCSModified';
sim(modelName);
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The Spectrum Analyzer block now shows a sample rate of 96 MHz, which is 1.5 times the previous
sample rate, as expected.

Share Wireless Waveform Configuration with Other Blocks in the Model

To access read-only block parameters and waveform configuration parameters, use the UserData
common block property, which is a structure with these fields.

• WaveformConfig: Waveform configuration
• WaveformLength: Waveform length
• Fs: Waveform sample rate

You can access the user data of the exported block by using the get_param function.

get_param([gcs '/OFDM Waveform Generator'],'UserData')

ans = 

  struct with fields:

    WaveformConfig: [1x1 comm.OFDMModulator]
    WaveformLength: 8000
                Fs: 96000000
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Store the structure available in the user data in a base workspace variable by using the InitFcn in
the callback. The InitFcn callback is executed during a model update and simulation. To use this
callback, click the MODELING tab, then click the Model Settings dropdown, and click the Model
Properties option. In the Callbacks pane, select the InitFcn callback. Assign the user data to a
new base workspace variable (for example, cfg).

The parameters that are available in the user data of the exported block are updated every time you
apply configuration changes in the Code tab.

To demodulate the OFDM waveform, add an OFDM Demodulator block to the model. Connect an
AWGN Channel block between the OFDM Waveform Generator and OFDM Demodulator blocks to add
white Gaussian noise to the input signal. Also add a Constellation Diagram block to plot the
demodulated symbols.

modelName = 'WWGExport2SimulinkModelWithDemod';
open_system(modelName);

The parameters that are required to configure the OFDM Demodulator block must match the
parameters that are used to configure the exported block, (otherwise, demodulation fails). To access
the configuration parameters of the exported block, use the variable cfg. This figure shows the
parameters of the OFDM Demodulator block.
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Because the OFDM Demodulator block requires the entire OFDM waveform for demodulation, set the
Samples per frame parameter in the exported block to cfg.WaveformLength. Simulate the model.

sim(modelName);
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After demodulating the OFDM waveform by using the OFDM Demodulator block, the Constellation
Diagram block displays the resulting QAM symbols.

Generate Multicarrier Waveforms

For multicarrier generation, the sampling rates for all of the waveforms must be the same. To shift
the waveforms to a carrier offset and aggregate them, you can use the Multiband Combiner block.

modelName = 'WWGExport2SimulinkMulticarrier';
open_system(modelName);
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To shift the waveforms in frequency, you might have to increase the sampling rates. The Multiband
Combiner block provides the option to oversample the input waveforms before shifting and combining
them. This figure shows the parameters of the Multiband Combiner block.
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Simulate the model to visualize the waveforms that are centered at -80, 20, and 100 MHz.

sim(modelName);
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See Also
Apps
5G Waveform Generator

More About
• “Modeling and Testing an NR RF Transmitter”
• “Modeling and Testing an NR RF Receiver with LTE Interference”
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Model 5G NR Communication Links
You can model 5G NR shared channel links, including all of the steps from transport block generation
to transport channel decoding, by using the 5G Toolbox software. This figure shows the main
elements of a downlink communication link.

These examples show how to model the main elements of the downlink communication link. Modeling
the main elements of the uplink communication link is similar.

• The “Model 5G NR Transport Channels with HARQ” on page 2-41 example describes how to
model 5G NR transport channels with multiple hybrid automatic repeat-request (HARQ) processes
using the downlink shared channel (DL-SCH) encoder and decoder System objects.

• The “Map 5G Physical Channels and Signals to the Resource Grid” on page 2-49 example shows
how to generate, precode, and map 5G NR physical channels and signals to the resource grid.

• The “DL-SCH and PDSCH Transmit and Receive Processing Chain” on page 2-59 example shows
how to model the full physical downlink shared channel link, including the coding stages, channel
modeling, and the receiver and decoding steps.

See Also

More About
• “Downlink Channels”
• “Uplink Channels”
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Model 5G NR Transport Channels with HARQ

This example shows how to model 5G NR transport channels with multiple hybrid automatic repeat-
request (HARQ) processes using the downlink shared channel (DL-SCH) encoder and decoder 5G
Toolbox™ System objects.

Introduction

This figure shows the link elements that are modeled in this example in the context of a 5G downlink
link. These elements are:

• DL-SCH encoding and decoding
• Physical downlink shared channel (PDSCH) encoding and decoding
• HARQ management

The other link elements are not modeled in this example.

The examples also measures the block error rate (BLER) using an AWGN channel. This figure shows
all of the link elements modeled in this example followed by the BLER calculation.
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This figure shows that the DL-SCH encoder uses internal buffers to store the transport blocks for
each HARQ process and then selects the active HARQ process buffer content for the encoding. The
DL-SCH decoder uses a similar buffering mechanism to store and select HARQ processes.

The DL-SCH encoder and decoder do not manage the HARQ processes internally. The example uses
the HARQ entity object, HARQEntity.m, for HARQ process management. This figure shows the
structure of the HARQ entity object

Simulation Parameters

Specify the number of transport blocks to simulate and the signal to noise ratio (SNR).

noTransportBlocks = 100;
SNRdB = 7; % SNR in dB

Reset random number generator for reproducibility.
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rng("default");

DL-SCH Configuration

Specify the code rate, the number of HARQ processes, and the redundancy values (RVs) sequence.
This sequence controls the redundancy version retransmissions in case of error.

% DL-SCH parameters
codeRate = 490/1024;
NHARQProcesses = 16; % Number of parallel HARQ processes to use
rvSeq = [0 2 3 1];

Create the DL-SCH encoder and decoder objects. To use multiple processes, set the
MultipleHARQProcesses property to true for both objects. To enable retransmissions for multiple
HARQ processes, the encoder buffers the input bits. The decoder needs a similar mechanism to
enable soft combining of retransmissions for each HARQ process.

% Create DL-SCH encoder object
encodeDLSCH = nrDLSCH;
encodeDLSCH.MultipleHARQProcesses = true;
encodeDLSCH.TargetCodeRate = codeRate;

% Create DL-SCH decoder object
decodeDLSCH = nrDLSCHDecoder;
decodeDLSCH.MultipleHARQProcesses = true;
decodeDLSCH.TargetCodeRate = codeRate;
decodeDLSCH.LDPCDecodingAlgorithm = "Normalized min-sum";
decodeDLSCH.MaximumLDPCIterationCount = 6;

The DL-SCH encoder and decoder objects can model up to 16 HARQ processes. The encoder and
decoder objects use the HARQprocessID property of the HARQ entity object to identify the active
HARQ process when performing any of these operations.

• Setting new transport block to transmit
• Encoding data
• Resetting soft buffers
• Decoding data

Carrier and PDSCH Configuration

Specify the carrier and PDSCH parameters. These parameters are used for PDSCH encoding and
decoding and for calculating the transport block size.

Create a carrier object, specifying the subcarrier spacing (SCS) and the bandwidth (BW).

% Numerology
SCS = 15;                         % SCS: 15, 30, 60, 120 or 240 (kHz)
NRB = 52;                         % BW in number of RBs (52 RBs at 15 kHz SCS for 10 MHz BW)

carrier = nrCarrierConfig;
carrier.NSizeGrid = NRB;
carrier.SubcarrierSpacing = SCS;
carrier.CyclicPrefix = "Normal";  % "Normal" or "Extended"

Create a PDSCH configuration object. The PDSCH parameters determine the available bit capacity
and the transport block size.
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modulation = "16QAM";             % Modulation scheme

pdsch = nrPDSCHConfig;
pdsch.Modulation = modulation;
pdsch.PRBSet = 0:NRB-1;           % Assume full band allocation
pdsch.NumLayers = 1;              % Assume only one layer and one codeword

HARQ Management

Create a HARQ entity object to manage the HARQ processes. For each HARQ processes, the object
stores these elements:

• HARQ ID number.
• RV.
• Transmission number, which indicates how many times a certain transport block has been

transmitted.
• Flag to indicate whether new data is required. New data is required when a transport block is

received successfully or if a sequence timeout has occurred (all RV transmissions have failed).
• Flag to indicate whether a sequence timeout has occurred (all RV transmissions have failed).

harqEntity = HARQEntity(0:NHARQProcesses-1,rvSeq,pdsch.NumCodewords);

The HARQ entity is used to manage the buffers in the DL-SCH encoder and decoder.

BER Simulation

Loop over a number of transport blocks. For each transport block:

• Calculate the transport block size in number of bits.
• Generate new data block or reset buffers in the decoder.
• Apply DL-SCH encoding.
• Modulate bits to symbols.
• Apply AWGN.
• Demodulate soft bits (symbols to soft bits).
• Decode the DL-SCH.
• Update the HARQ processes.

% Initialize loop variables
noiseVar = 1./(10.^(SNRdB/10)); % Noise variance
numBlkErr = 0;                  % Number of block errors
numRxBits = [];                 % Number of successfully received bits per transmission
txedTrBlkSizes = [];            % Number of transmitted info bits per transmission

for nTrBlk = 1:noTransportBlocks
    % A transport block or transmission time interval (TTI) corresponds to
    % one slot
    carrier.NSlot = carrier.NSlot+1;

Transport Block Size Calculation

Calculate the transport block size.

    % Generate PDSCH indices info, which is used to calculate the transport
    % block size
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    [~,pdschInfo] = nrPDSCHIndices(carrier,pdsch);

    % Calculate transport block sizes
    Xoh_PDSCH = 0;
    trBlkSizes = nrTBS(pdsch.Modulation,pdsch.NumLayers,numel(pdsch.PRBSet),pdschInfo.NREPerPRB,codeRate,Xoh_PDSCH);

Because the PDSCH capacity in bits, pdsch.G, is dynamically determined, the actual code rate might
not be exactly equal to the target code rate specified by the TargetCodeRate property of the
encodeDLSCH object.

HARQ Processing (Buffer Management)

This section explains the buffer management in the encoder and decoder.

• DL-SCH encoder buffers: Generate a new transport block if new data is required for the active
HARQ process. Store the transport block in the corresponding buffer. If no new data is required,
the buffered bits in the DL-SCH encoder are used for retransmission.

• DL-SCH decoder buffers: The soft buffers in the receiver store previously received versions of the
same transport block. These buffers are cleared automatically upon successful reception (no CRC
error). However, if the RV sequence ends without successful decoding, the buffers must be flushed
manually by calling the resetSoftBuffer object function.

    % Get new transport blocks and flush decoder soft buffer, as required
    for cwIdx = 1:pdsch.NumCodewords
        if harqEntity.NewData(cwIdx)
            % Create and store a new transport block for transmission
            trBlk = randi([0 1],trBlkSizes(cwIdx),1);
            setTransportBlock(encodeDLSCH,trBlk,cwIdx-1,harqEntity.HARQProcessID);

            % If the previous RV sequence ends without successful decoding,
            % flush the soft buffer explicitly
            if harqEntity.SequenceTimeout(cwIdx)
                resetSoftBuffer(decodeDLSCH,cwIdx-1,harqEntity.HARQProcessID);
            end
        end
    end

DL-SCH Encoding

Encode the DL-SCH transport blocks.

    codedTrBlock = encodeDLSCH(pdsch.Modulation,pdsch.NumLayers,pdschInfo.G, ...
        harqEntity.RedundancyVersion,harqEntity.HARQProcessID);

PDSCH Encoding

Generate the PDSCH symbols.

    modOut = nrPDSCH(carrier,pdsch,codedTrBlock);

AWGN Channel

Add white Gaussian noise.

    rxSig = awgn(modOut,SNRdB);    
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PDSCH Demodulation

Soft demodulate the received symbols.

    rxLLR = nrPDSCHDecode(carrier,pdsch,rxSig,noiseVar);

DL-SCH Decoding

Apply DL-SCH decoding.

    decodeDLSCH.TransportBlockLength = trBlkSizes;
    [decbits,blkerr] = decodeDLSCH(rxLLR,pdsch.Modulation,pdsch.NumLayers, ...
        harqEntity.RedundancyVersion,harqEntity.HARQProcessID);

Results

Store the results to calculate the BLER.

    % Store values to calculate throughput (only for active transport blocks)
    if(any(trBlkSizes ~= 0))
        numRxBits = [numRxBits trBlkSizes.*(1-blkerr)];
        txedTrBlkSizes = [txedTrBlkSizes trBlkSizes];
    end
    
    if blkerr   
        numBlkErr = numBlkErr + 1;
    end

HARQ Process Update

Update the current HARQ process with the CRC error, and then advance to the next process. This
step updates the information related to the active HARQ process in the HARQ entity.

    statusReport = updateAndAdvance(harqEntity,blkerr,trBlkSizes,pdschInfo.G);    

Display information about the current decoding attempt.

    disp("Slot "+(nTrBlk)+". "+statusReport);
   
end % for nTrBlk = 1:noTransportBlocks

Slot 1. HARQ Proc 0: CW0: Initial transmission passed (RV=0,CR=0.481509).
Slot 2. HARQ Proc 1: CW0: Initial transmission failed (RV=0,CR=0.481509).
Slot 3. HARQ Proc 2: CW0: Initial transmission failed (RV=0,CR=0.481509).
Slot 4. HARQ Proc 3: CW0: Initial transmission failed (RV=0,CR=0.481509).
Slot 5. HARQ Proc 4: CW0: Initial transmission failed (RV=0,CR=0.481509).
Slot 6. HARQ Proc 5: CW0: Initial transmission failed (RV=0,CR=0.481509).
Slot 7. HARQ Proc 6: CW0: Initial transmission passed (RV=0,CR=0.481509).
Slot 8. HARQ Proc 7: CW0: Initial transmission failed (RV=0,CR=0.481509).
Slot 9. HARQ Proc 8: CW0: Initial transmission passed (RV=0,CR=0.481509).
Slot 10. HARQ Proc 9: CW0: Initial transmission failed (RV=0,CR=0.481509).
Slot 11. HARQ Proc 10: CW0: Initial transmission failed (RV=0,CR=0.481509).
Slot 12. HARQ Proc 11: CW0: Initial transmission passed (RV=0,CR=0.481509).
Slot 13. HARQ Proc 12: CW0: Initial transmission passed (RV=0,CR=0.481509).
Slot 14. HARQ Proc 13: CW0: Initial transmission passed (RV=0,CR=0.481509).
Slot 15. HARQ Proc 14: CW0: Initial transmission failed (RV=0,CR=0.481509).
Slot 16. HARQ Proc 15: CW0: Initial transmission failed (RV=0,CR=0.481509).
Slot 17. HARQ Proc 0: CW0: Initial transmission passed (RV=0,CR=0.481509).
Slot 18. HARQ Proc 1: CW0: Retransmission #1 passed (RV=2,CR=0.481509).
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Slot 19. HARQ Proc 2: CW0: Retransmission #1 passed (RV=2,CR=0.481509).
Slot 20. HARQ Proc 3: CW0: Retransmission #1 passed (RV=2,CR=0.481509).
Slot 21. HARQ Proc 4: CW0: Retransmission #1 passed (RV=2,CR=0.481509).
Slot 22. HARQ Proc 5: CW0: Retransmission #1 passed (RV=2,CR=0.481509).
Slot 23. HARQ Proc 6: CW0: Initial transmission failed (RV=0,CR=0.481509).
Slot 24. HARQ Proc 7: CW0: Retransmission #1 passed (RV=2,CR=0.481509).
Slot 25. HARQ Proc 8: CW0: Initial transmission failed (RV=0,CR=0.481509).
Slot 26. HARQ Proc 9: CW0: Retransmission #1 passed (RV=2,CR=0.481509).
Slot 27. HARQ Proc 10: CW0: Retransmission #1 passed (RV=2,CR=0.481509).
Slot 28. HARQ Proc 11: CW0: Initial transmission failed (RV=0,CR=0.481509).
Slot 29. HARQ Proc 12: CW0: Initial transmission passed (RV=0,CR=0.481509).
Slot 30. HARQ Proc 13: CW0: Initial transmission failed (RV=0,CR=0.481509).
Slot 31. HARQ Proc 14: CW0: Retransmission #1 passed (RV=2,CR=0.481509).
Slot 32. HARQ Proc 15: CW0: Retransmission #1 passed (RV=2,CR=0.481509).
Slot 33. HARQ Proc 0: CW0: Initial transmission failed (RV=0,CR=0.481509).
Slot 34. HARQ Proc 1: CW0: Initial transmission failed (RV=0,CR=0.481509).
Slot 35. HARQ Proc 2: CW0: Initial transmission passed (RV=0,CR=0.481509).
Slot 36. HARQ Proc 3: CW0: Initial transmission failed (RV=0,CR=0.481509).
Slot 37. HARQ Proc 4: CW0: Initial transmission failed (RV=0,CR=0.481509).
Slot 38. HARQ Proc 5: CW0: Initial transmission failed (RV=0,CR=0.481509).
Slot 39. HARQ Proc 6: CW0: Retransmission #1 passed (RV=2,CR=0.481509).
Slot 40. HARQ Proc 7: CW0: Initial transmission failed (RV=0,CR=0.481509).
Slot 41. HARQ Proc 8: CW0: Retransmission #1 passed (RV=2,CR=0.481509).
Slot 42. HARQ Proc 9: CW0: Initial transmission passed (RV=0,CR=0.481509).
Slot 43. HARQ Proc 10: CW0: Initial transmission failed (RV=0,CR=0.481509).
Slot 44. HARQ Proc 11: CW0: Retransmission #1 passed (RV=2,CR=0.481509).
Slot 45. HARQ Proc 12: CW0: Initial transmission failed (RV=0,CR=0.481509).
Slot 46. HARQ Proc 13: CW0: Retransmission #1 passed (RV=2,CR=0.481509).
Slot 47. HARQ Proc 14: CW0: Initial transmission passed (RV=0,CR=0.481509).
Slot 48. HARQ Proc 15: CW0: Initial transmission passed (RV=0,CR=0.481509).
Slot 49. HARQ Proc 0: CW0: Retransmission #1 passed (RV=2,CR=0.481509).
Slot 50. HARQ Proc 1: CW0: Retransmission #1 passed (RV=2,CR=0.481509).
Slot 51. HARQ Proc 2: CW0: Initial transmission passed (RV=0,CR=0.481509).
Slot 52. HARQ Proc 3: CW0: Retransmission #1 passed (RV=2,CR=0.481509).
Slot 53. HARQ Proc 4: CW0: Retransmission #1 passed (RV=2,CR=0.481509).
Slot 54. HARQ Proc 5: CW0: Retransmission #1 passed (RV=2,CR=0.481509).
Slot 55. HARQ Proc 6: CW0: Initial transmission passed (RV=0,CR=0.481509).
Slot 56. HARQ Proc 7: CW0: Retransmission #1 passed (RV=2,CR=0.481509).
Slot 57. HARQ Proc 8: CW0: Initial transmission failed (RV=0,CR=0.481509).
Slot 58. HARQ Proc 9: CW0: Initial transmission failed (RV=0,CR=0.481509).
Slot 59. HARQ Proc 10: CW0: Retransmission #1 passed (RV=2,CR=0.481509).
Slot 60. HARQ Proc 11: CW0: Initial transmission failed (RV=0,CR=0.481509).
Slot 61. HARQ Proc 12: CW0: Retransmission #1 passed (RV=2,CR=0.481509).
Slot 62. HARQ Proc 13: CW0: Initial transmission failed (RV=0,CR=0.481509).
Slot 63. HARQ Proc 14: CW0: Initial transmission passed (RV=0,CR=0.481509).
Slot 64. HARQ Proc 15: CW0: Initial transmission failed (RV=0,CR=0.481509).
Slot 65. HARQ Proc 0: CW0: Initial transmission failed (RV=0,CR=0.481509).
Slot 66. HARQ Proc 1: CW0: Initial transmission failed (RV=0,CR=0.481509).
Slot 67. HARQ Proc 2: CW0: Initial transmission failed (RV=0,CR=0.481509).
Slot 68. HARQ Proc 3: CW0: Initial transmission failed (RV=0,CR=0.481509).
Slot 69. HARQ Proc 4: CW0: Initial transmission failed (RV=0,CR=0.481509).
Slot 70. HARQ Proc 5: CW0: Initial transmission failed (RV=0,CR=0.481509).
Slot 71. HARQ Proc 6: CW0: Initial transmission passed (RV=0,CR=0.481509).
Slot 72. HARQ Proc 7: CW0: Initial transmission passed (RV=0,CR=0.481509).
Slot 73. HARQ Proc 8: CW0: Retransmission #1 passed (RV=2,CR=0.481509).
Slot 74. HARQ Proc 9: CW0: Retransmission #1 passed (RV=2,CR=0.481509).
Slot 75. HARQ Proc 10: CW0: Initial transmission passed (RV=0,CR=0.481509).
Slot 76. HARQ Proc 11: CW0: Retransmission #1 passed (RV=2,CR=0.481509).
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Slot 77. HARQ Proc 12: CW0: Initial transmission failed (RV=0,CR=0.481509).
Slot 78. HARQ Proc 13: CW0: Retransmission #1 passed (RV=2,CR=0.481509).
Slot 79. HARQ Proc 14: CW0: Initial transmission failed (RV=0,CR=0.481509).
Slot 80. HARQ Proc 15: CW0: Retransmission #1 passed (RV=2,CR=0.481509).
Slot 81. HARQ Proc 0: CW0: Retransmission #1 passed (RV=2,CR=0.481509).
Slot 82. HARQ Proc 1: CW0: Retransmission #1 passed (RV=2,CR=0.481509).
Slot 83. HARQ Proc 2: CW0: Retransmission #1 passed (RV=2,CR=0.481509).
Slot 84. HARQ Proc 3: CW0: Retransmission #1 passed (RV=2,CR=0.481509).
Slot 85. HARQ Proc 4: CW0: Retransmission #1 passed (RV=2,CR=0.481509).
Slot 86. HARQ Proc 5: CW0: Retransmission #1 passed (RV=2,CR=0.481509).
Slot 87. HARQ Proc 6: CW0: Initial transmission passed (RV=0,CR=0.481509).
Slot 88. HARQ Proc 7: CW0: Initial transmission failed (RV=0,CR=0.481509).
Slot 89. HARQ Proc 8: CW0: Initial transmission passed (RV=0,CR=0.481509).
Slot 90. HARQ Proc 9: CW0: Initial transmission failed (RV=0,CR=0.481509).
Slot 91. HARQ Proc 10: CW0: Initial transmission failed (RV=0,CR=0.481509).
Slot 92. HARQ Proc 11: CW0: Initial transmission failed (RV=0,CR=0.481509).
Slot 93. HARQ Proc 12: CW0: Retransmission #1 passed (RV=2,CR=0.481509).
Slot 94. HARQ Proc 13: CW0: Initial transmission failed (RV=0,CR=0.481509).
Slot 95. HARQ Proc 14: CW0: Retransmission #1 passed (RV=2,CR=0.481509).
Slot 96. HARQ Proc 15: CW0: Initial transmission passed (RV=0,CR=0.481509).
Slot 97. HARQ Proc 0: CW0: Initial transmission passed (RV=0,CR=0.481509).
Slot 98. HARQ Proc 1: CW0: Initial transmission failed (RV=0,CR=0.481509).
Slot 99. HARQ Proc 2: CW0: Initial transmission passed (RV=0,CR=0.481509).
Slot 100. HARQ Proc 3: CW0: Initial transmission failed (RV=0,CR=0.481509).

BLER Results

Calculate the BLER and the throughput (percentage of successfully received transport blocks). To
provide statistically meaningful results, run this simulation for many transport blocks.

maxThroughput = sum(txedTrBlkSizes); % Maximum possible throughput
totalNumRxBits = sum(numRxBits,2);   % Number of successfully received bits

disp("Block Error Rate: "+string(numBlkErr/noTransportBlocks))

Block Error Rate: 0.42

disp("Throughput: " + string(totalNumRxBits*100/maxThroughput) + "%")

Throughput: 58%

See Also

Related Examples
• “Map 5G Physical Channels and Signals to the Resource Grid” on page 2-49
• “DL-SCH and PDSCH Transmit and Receive Processing Chain” on page 2-59
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Map 5G Physical Channels and Signals to the Resource Grid

This example shows how to generate and map 5G New Radio (NR) physical channels and signals to
the resource grid using 5G Toolbox ™ features.

Introduction

This figure shows the link elements that are modeled in this example in the context of a 5G downlink
link. These elements are:

• Generation of a physical downlink shared channel (PDSCH) and its demodulation reference signal
(DM-RS)

• MIMO precoding and mapping of the PDSCH and PDSCH DM-RS to the resource grid
• OFDM modulation

Carrier Configuration

Specify the number of transmit antennas and create a carrier configuration object. This object
controls the size of the resource grid. For simplicity, use the default carrier configuration object.

nTxAnts = 4;
carrier = nrCarrierConfig

carrier = 
  nrCarrierConfig with properties:

              NCellID: 1
    SubcarrierSpacing: 15
         CyclicPrefix: 'normal'
            NSizeGrid: 52
           NStartGrid: 0
                NSlot: 0
               NFrame: 0

   Read-only properties:
       SymbolsPerSlot: 14
     SlotsPerSubframe: 1
        SlotsPerFrame: 10
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PDSCH and PDSCH DM-RS Configuration

Create a PDSCH configuration object. This object specifies PDSCH-related parameters. Specify 16-
QAM modulation, two layers, and full band allocation. This configuration maps the PDSCH into a
bandwidth part (BWP) of equal size to the carrier. You can also use this object to specify other time-
allocation parameters and DM-RS settings.

pdsch = nrPDSCHConfig;
pdsch.Modulation = "16QAM";
pdsch.NumLayers = 2;
pdsch.PRBSet = 0:carrier.NSizeGrid-1; % Full band allocation

Display the PDSCH and PDSCH DM-RS parameters.

pdsch

pdsch = 
  nrPDSCHConfig with properties:

                NSizeBWP: []
               NStartBWP: []
             ReservedPRB: {[1x1 nrPDSCHReservedConfig]}
              ReservedRE: []
              Modulation: '16QAM'
               NumLayers: 2
             MappingType: 'A'
        SymbolAllocation: [0 14]
                  PRBSet: [0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 ... ]
    VRBToPRBInterleaving: 0
           VRBBundleSize: 2
                     NID: []
                    RNTI: 1
                    DMRS: [1x1 nrPDSCHDMRSConfig]
              EnablePTRS: 0
                    PTRS: [1x1 nrPDSCHPTRSConfig]

   Read-only properties:
            NumCodewords: 1

pdsch.DMRS

ans = 
  nrPDSCHDMRSConfig with properties:

      DMRSConfigurationType: 1
         DMRSReferencePoint: 'CRB0'
          DMRSTypeAPosition: 2
     DMRSAdditionalPosition: 0
                 DMRSLength: 1
            CustomSymbolSet: []
                DMRSPortSet: []
                   NIDNSCID: []
                      NSCID: 0
    NumCDMGroupsWithoutData: 2
            DMRSDownlinkR16: 0

   Read-only properties:
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                  CDMGroups: [0 0]
                DeltaShifts: [0 0]
           FrequencyWeights: [2x2 double]
                TimeWeights: [2x2 double]
    DMRSSubcarrierLocations: [6x2 double]
                 CDMLengths: [2 1]

PDSCH Generation

Generate indices to map the PDSCH to the grid.

[pdschIndices,pdschInfo] = nrPDSCHIndices(carrier,pdsch);

Generate and map random PDSCH bits to PDSCH symbols. The input argument pdschInfo.G
specifies the bit capacity of the PDSCH, which is the length of the codeword from the channel coding
stages. pdschInfo.G takes into account the resource elements (REs) available for PDSCH
transmission. For simplicity, this example does not include downlink shared channel (DL-SCH)
modeling.

pdschBits = randi([0 1],pdschInfo.G,1);

Generate PDSCH symbols. The PDSCH symbols are stored in a matrix of size Ns-by-ν, where Ns is the
number of symbols and ν is the number of layers.

pdschSymbols = nrPDSCH(carrier,pdsch,pdschBits);
size(pdschSymbols)

ans = 1×2

        8112           2

PDSCH DM-RS Generation

Generate DM-RS symbols and indices.

dmrsSymbols = nrPDSCHDMRS(carrier,pdsch);
dmrsIndices = nrPDSCHDMRSIndices(carrier,pdsch);

Display the constellation plot with the PDSCH and the PDSCH DM-RS symbols.

plot(pdschSymbols(:),"o");hold on
plot(dmrsSymbols(:),"xr");hold off
title("PDSCH and PDSCH DM-RS Symbols");xlabel("In-Phase Amplitude");ylabel("Quadrature Amplitude")
legend("PDSCH","PDSCH DM-RS")
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MIMO Precoding and Mapping to the Resource Grid

Apply precoding. Channel measurements determine the precoding weights (also referred to as
beamforming weights). However, this example does not model the propagation channel. This example
assumes that the precoding weights are known.

% Precoding weights
W = fft(eye(nTxAnts))/sqrt(nTxAnts);              % Unitary precoding matrix
w = W(1:pdsch.NumLayers,:)/sqrt(pdsch.NumLayers); % Normalize by number of layers

The precoding matrix, w, must be a matrix of size ν-by-Ntx, where ν is the number of layers and Ntx is
the number of transmit antennas.
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size(pdschSymbols)

ans = 1×2

        8112           2

size(w)

ans = 1×2

     2     4

Precode the PDSCH symbols.

pdschSymbolsPrecoded = pdschSymbols*w;

The number of rows in the pdschSymbolsPrecoded matrix corresponds to the number of PDSCH
symbols and the number of columns corresponds to the number of antennas.

size(pdschSymbolsPrecoded)

ans = 1×2

        8112           4

Generate an empty resource grid. This grid spans one slot.

pdschGrid = nrResourceGrid(carrier,nTxAnts);

When you map the PDSCH symbols to the resource grid, take into account that the PDSCH indices
generated by the nrPDSCHIndices function refer to layers and not antennas. This format can be
useful when you map PDSCH symbols directly to layers. In this case, the resulting resource grids are
not precoded.
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Because this example applies precoding to the PDSCH symbols before mapping to the resource grid,
the precoded PDSCH symbols are mapped to antennas and not layers. To convert layer indices to
antenna indices, use the nrExtractResources function.

[~,pdschAntIndices] = nrExtractResources(pdschIndices,pdschGrid);
pdschGrid(pdschAntIndices) = pdschSymbolsPrecoded;

Display the resource grid for the first antenna. The blue gap is left for the DM-RS.

imagesc([0 carrier.SymbolsPerSlot-1],[0 carrier.NSizeGrid*12-1],abs(pdschGrid(:,:,1)));
axis xy;title("Resource Grid (First Antenna) - PDSCH");xlabel("OFDM Symbol");ylabel("Subcarrier")
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Precode and map the DM-RS symbols to the grid. Similar to the PDSCH indices, the DM-RS indices
refer to layers. To convert these layers to multiantenna indices, use the nrExtractResources
function again.

% PDSCH DM-RS precoding and mapping
for p = 1:size(dmrsSymbols,2)
    [~,dmrsAntIndices] = nrExtractResources(dmrsIndices(:,p),pdschGrid);
    pdschGrid(dmrsAntIndices) = pdschGrid(dmrsAntIndices) + dmrsSymbols(:,p)*w(p,:);
end

Display the resource grid for the first antenna.

imagesc([0 carrier.SymbolsPerSlot-1],[0 carrier.NSizeGrid*12-1],abs(pdschGrid(:,:,1)));
axis xy;title("Resource Grid (First Antenna) - PDSCH and PDSCH DM-RS");
    xlabel("OFDM Symbol");ylabel("Subcarrier")
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Display a single resource block (RB) from the resource grid. This view zooms into a single RB and
provides a detailed view of the RE contents.

imagesc(abs(pdschGrid(1:12,:,1)));view(2)
axis xy;title("Resource Block - PDSCH and PDSCH DM-RS");ylabel("Subcarrier");xlabel("OFDM Symbol")
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OFDM Modulation

OFDM-modulate the resource grid and display the time-domain waveform for the first antenna.

[txWaveform,waveformInfo] = nrOFDMModulate(carrier,pdschGrid);
plot(abs(txWaveform(:,1)));title("Time Domain Waveform (First Antenna)");xlabel("Sample Number");ylabel("Magnitude")
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The waveformInfo output contains information about the time-domain waveform, such as the
sampling rate.

waveformInfo

waveformInfo = struct with fields:
                   Nfft: 1024
             SampleRate: 15360000
    CyclicPrefixLengths: [80 72 72 72 72 72 72 80 72 72 72 72 72 72]
          SymbolLengths: [1104 1096 1096 1096 1096 1096 1096 1104 1096 ... ]
              Windowing: 36
           SymbolPhases: [0 0 0 0 0 0 0 0 0 0 0 0 0 0]
         SymbolsPerSlot: 14
       SlotsPerSubframe: 1
          SlotsPerFrame: 10

See Also

Related Examples
• “Model 5G NR Transport Channels with HARQ” on page 2-41
• “DL-SCH and PDSCH Transmit and Receive Processing Chain” on page 2-59
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DL-SCH and PDSCH Transmit and Receive Processing Chain

This example shows how to use 5G Toolbox™ features to model a 5G NR physical downlink shared
channel (PDSCH) link, including all of the steps from transport block generation to bit decoding at
the receiver end.

Introduction

This diagram shows the downlink shared channel (DL-SCH) and PDSCH transmit and receive
processing chain.

This example shows how to model these elements of a link-level simulation.

• DL-SCH encoding
• Hybrid ARQ (HARQ) management
• PDSCH encoding
• Multiple-input multiple-output (MIMO) precoding
• OFDM modulation
• Propagation channel and noise addition
• Timing synchronization
• OFDM demodulation
• Channel estimation and equalization
• PDSCH decoding
• DL-SCH decoding

For an example of how to use link-level simulation to measure throughput, see “NR PDSCH
Throughput”.

Simulation Parameters

Specify the signal-to-noise ratio (SNR), number of slots to simulate, and perfect channel estimation
flag. To learn more about the SNR definition used in this example, see “SNR Definition Used in Link
Simulations”.

SNRdB = 10;                % SNR in dB
totalNoSlots = 20;         % Number of slots to simulate
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perfectEstimation = false; % Perfect synchronization and channel estimation
rng("default");            % Set default random number generator for repeatability

Carrier Configuration

Create a carrier configuration object. This object controls the numerology, such as, the subcarrier
spacing, bandwidth, and cyclic prefix (CP) length. This example uses the default set of properties.

carrier = nrCarrierConfig

carrier = 
  nrCarrierConfig with properties:

              NCellID: 1
    SubcarrierSpacing: 15
         CyclicPrefix: 'normal'
            NSizeGrid: 52
           NStartGrid: 0
                NSlot: 0
               NFrame: 0

   Read-only properties:
       SymbolsPerSlot: 14
     SlotsPerSubframe: 1
        SlotsPerFrame: 10

PDSCH and DM-RS Configuration

Create a PDSCH configuration object. Specify the modulation scheme (16-QAM) and the number of
layers (2). Allocate all resource blocks (RBs) to the PDSCH (full band allocation). You can also specify
other time-allocation parameters and demodulation reference signal (DM-RS) settings in this object.

pdsch = nrPDSCHConfig;
pdsch.Modulation = "16QAM";
pdsch.NumLayers = 2;
pdsch.PRBSet = 0:carrier.NSizeGrid-1;     % Full band allocation

Display the PDSCH parameters.

pdsch

pdsch = 
  nrPDSCHConfig with properties:

                NSizeBWP: []
               NStartBWP: []
             ReservedPRB: {[1x1 nrPDSCHReservedConfig]}
              ReservedRE: []
              Modulation: '16QAM'
               NumLayers: 2
             MappingType: 'A'
        SymbolAllocation: [0 14]
                  PRBSet: [0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 ... ]
    VRBToPRBInterleaving: 0
           VRBBundleSize: 2
                     NID: []
                    RNTI: 1
                    DMRS: [1x1 nrPDSCHDMRSConfig]
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              EnablePTRS: 0
                    PTRS: [1x1 nrPDSCHPTRSConfig]

   Read-only properties:
            NumCodewords: 1

Set the DM-RS parameters. To improve channel estimation, add an additional DM-RS position.

pdsch.DMRS.DMRSAdditionalPosition = 1;

Set the DM-RS configuration type and the DM-RS length, which determines the number of orthogonal
DM-RS sequences or DM-RS ports.

• DMRSConfigurationType = 1 supports up to 4 DM-RS ports when DMRSLength = 1.
• DMRSConfigurationType = 1 supports up to 8 DM-RS ports when DMRSLength = 2.
• DMRSConfigurationType = 2 supports up to 6 DM-RS ports when DMRSLength = 1. This is

designed for multi-user MIMO (MU-MIMO).
• DMRSConfigurationType = 2 supports up to 12 DM-RS ports when DMRSLength = 2. This is

designed for MU-MIMO.

The maximum number of layers must be less than or equal to the number of DM-RS ports.

pdsch.DMRS.DMRSConfigurationType = 1;
pdsch.DMRS.DMRSLength = 2;
pdsch.DMRS                            % Display DM-RS properties

ans = 
  nrPDSCHDMRSConfig with properties:

      DMRSConfigurationType: 1
         DMRSReferencePoint: 'CRB0'
          DMRSTypeAPosition: 2
     DMRSAdditionalPosition: 1
                 DMRSLength: 2
            CustomSymbolSet: []
                DMRSPortSet: []
                   NIDNSCID: []
                      NSCID: 0
    NumCDMGroupsWithoutData: 2
            DMRSDownlinkR16: 0

   Read-only properties:
                  CDMGroups: [0 0]
                DeltaShifts: [0 0]
           FrequencyWeights: [2x2 double]
                TimeWeights: [2x2 double]
    DMRSSubcarrierLocations: [6x2 double]
                 CDMLengths: [2 1]

DL-SCH Configuration

Specify the code rate, the number of HARQ processes, and the redundancy version (RV) sequence
values. This sequence controls the RV retransmissions in case of error. To disable HARQ
retransmissions, you can set rvSeq to a fixed value (for example, 0). For more information on how to
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model transport channels with HARQ, see “Model 5G NR Transport Channels with HARQ” on page 2-
41.

NHARQProcesses = 16;     % Number of parallel HARQ processes
rvSeq = [0 2 3 1];

Take into account the number of codewords when specifying the coding rate. The number of
codewords is a read-only property of the PDSCH configuration object that depends on the number of
layers.

• 1 codeword for up to 4 layers
• 2 codewords for more than 4 layers

% Coding rate
if pdsch.NumCodewords == 1
    codeRate = 490/1024;
else
    codeRate = [490 490]./1024;
end

Create the DL-SCH encoder and decoder objects. To use multiple processes, set the
MultipleHARQProcesses property to true for both objects. You do not need to specify the number
of HARQ processes. The DL-SCH encoder and decoder objects can model up to 16 HARQ processes.
To identify the active HARQ process when performing operations with the DL-SCH encoder and
decoder objects, use the HARQprocessID property of the HARQ entity object, defined in the next
section.

% Create DL-SCH encoder object
encodeDLSCH = nrDLSCH;
encodeDLSCH.MultipleHARQProcesses = true;
encodeDLSCH.TargetCodeRate = codeRate;

% Create DLSCH decoder object
decodeDLSCH = nrDLSCHDecoder;
decodeDLSCH.MultipleHARQProcesses = true;
decodeDLSCH.TargetCodeRate = codeRate;
decodeDLSCH.LDPCDecodingAlgorithm = "Normalized min-sum";
decodeDLSCH.MaximumLDPCIterationCount = 6;

HARQ Management

Create a HARQ entity object to manage the HARQ processes and the DL-SCH encoder and decoder
buffers. For each HARQ process, a HARQ entity stores these elements:

• HARQ ID number.
• RV.
• Transmission number, which indicates how many times a certain transport block has been

transmitted.
• Flag to indicate whether new data is required. New data is required when a transport block is

received successfully or if a sequence timeout has occurred (all RV transmissions have failed).
• Flag to indicate whether a sequence timeout has occurred (all RV transmissions have failed).

harqEntity = HARQEntity(0:NHARQProcesses-1,rvSeq,pdsch.NumCodewords);
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Channel Configuration

Specify the number of transmit and receive antennas.

nTxAnts = 8;
nRxAnts = 8;

% Check that the number of layers is valid for the number of antennas
if pdsch.NumLayers > min(nTxAnts,nRxAnts)
    error("The number of layers ("+string(pdsch.NumLayers)+") must be smaller than min(nTxAnts,nRxAnts) ("+string(min(nTxAnts,nRxAnts))+")")
end

Create a channel object.

channel = nrTDLChannel;
channel.DelayProfile = "TDL-C";
channel.NumTransmitAntennas = nTxAnts;
channel.NumReceiveAntennas = nRxAnts;

Set the channel sample rate to that of the OFDM signal. To obtain the sampling rate of the OFDM
signal, use the nrOFDMInfo function.

ofdmInfo = nrOFDMInfo(carrier);
channel.SampleRate = ofdmInfo.SampleRate;

Transmission and Reception

Set up a loop to simulate the transmission and reception of slots. Create a
comm.ConstellationDiagram to display the constellation of the equalized signal.

constPlot = comm.ConstellationDiagram;                                          % Constellation diagram object
constPlot.ReferenceConstellation = getConstellationRefPoints(pdsch.Modulation); % Reference constellation values
constPlot.EnableMeasurements = 1;                                               % Enable EVM measurements

% Initial timing offset
offset = 0;

estChannelGrid = getInitialChannelEstimate(channel,carrier);
newPrecodingWeight = getPrecodingMatrix(pdsch.PRBSet,pdsch.NumLayers,estChannelGrid);

for nSlot = 0:totalNoSlots-1
    % New slot
    carrier.NSlot = nSlot;

Calculate Transport Block Size

The transport block size is the number of bits to send to the channel coding stages. This value
depends on the capacity of the PDSCH. To calculate the transport block size, use the nrTBS function.

    % Generate PDSCH indices info, which is needed to calculate the transport
    % block size
    [pdschIndices,pdschInfo] = nrPDSCHIndices(carrier,pdsch);

    % Calculate transport block sizes
    Xoh_PDSCH = 0;
    trBlkSizes = nrTBS(pdsch.Modulation,pdsch.NumLayers,numel(pdsch.PRBSet),pdschInfo.NREPerPRB,codeRate,Xoh_PDSCH);
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HARQ Processing (Buffer Management)

This section explains the buffer management in the encoder and decoder.

• DL-SCH encoder buffers: Generate a new transport block if new data is required for the active
HARQ process. Store the transport block in the corresponding buffer. If new data is not required,
the DL-SCH encoder uses its buffered bits for retransmission.

• DL-SCH decoder buffers: The soft buffers in the receiver store previously received versions of the
same codeword. These buffers are cleared automatically upon successful reception (no CRC
error). However, if the RV sequence ends without successful decoding, flush the buffers manually
by using the resetSoftBuffer object function.

    % Get new transport blocks and flush decoder soft buffer, as required
    for cwIdx = 1:pdsch.NumCodewords
        if harqEntity.NewData(cwIdx)
            % Create and store a new transport block for transmission
            trBlk = randi([0 1],trBlkSizes(cwIdx),1);
            setTransportBlock(encodeDLSCH,trBlk,cwIdx-1,harqEntity.HARQProcessID);

            % If the previous RV sequence ends without successful
            % decoding, flush the soft buffer
            if harqEntity.SequenceTimeout(cwIdx)
                resetSoftBuffer(decodeDLSCH,cwIdx-1,harqEntity.HARQProcessID);
            end
        end
    end

DL-SCH Encoding

Encode the transport blocks. The transport block is already stored in one of the internal soft buffers
of the DL-SCH encoder object.

    codedTrBlock = encodeDLSCH(pdsch.Modulation,pdsch.NumLayers,pdschInfo.G,harqEntity.RedundancyVersion,harqEntity.HARQProcessID);

PDSCH Modulation and MIMO Precoding

Generate PDSCH symbols from the coded transport blocks.

    pdschSymbols = nrPDSCH(carrier,pdsch,codedTrBlock);

Get the precoding weights. This example assumes channel knowledge for precoding. (For an example
of how to use the channel estimate at the receiver to calculate the weights used for the transmission
in the next slot, see “NR PDSCH Throughput”.)

    precodingWeights = newPrecodingWeight;

Precode the PDSCH symbols.

    pdschSymbolsPrecoded = pdschSymbols*precodingWeights;

PDSCH DM-RS Generation

Generate DM-RS symbols and indices.

    dmrsSymbols = nrPDSCHDMRS(carrier,pdsch);
    dmrsIndices = nrPDSCHDMRSIndices(carrier,pdsch);
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Mapping to Resource Grid

Generate an empty resource grid. This grid represents a slot.

    pdschGrid = nrResourceGrid(carrier,nTxAnts);

The nrPDSCHIndices function generates indices that refer to layers and not antennas. This format is
useful when mapping PDSCH symbols directly to layers. In this case, the resulting resource grids are
not precoded. This figure shows the mapping process of the PDSCH symbols to as many resource
grids as layers.

Because this example applies MIMO precoding to the PDSCH symbols before mapping them to the
resource grids, the MIMO-precoded PDSCH symbols refer to antennas and not layers. To convert
layer indices to antenna indices, use the nrExtractResources function. This figure shows the
mapping process of MIMO-precoded symbols to as many resource grids as transmit antennas.
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    [~,pdschAntIndices] = nrExtractResources(pdschIndices,pdschGrid);
    pdschGrid(pdschAntIndices) = pdschSymbolsPrecoded;

MIMO-precode and map the DM-RS symbols to the resource grid. Similar to the PDSCH indices, the
DM-RS indices refer to layers. To convert these layer indices to antenna indices, use the
nrExtractResources function again.

    % PDSCH DM-RS precoding and mapping
    for p = 1:size(dmrsSymbols,2)
        [~,dmrsAntIndices] = nrExtractResources(dmrsIndices(:,p),pdschGrid);
        pdschGrid(dmrsAntIndices) = pdschGrid(dmrsAntIndices) + dmrsSymbols(:,p)*precodingWeights(p,:);
    end

OFDM Modulation

OFDM-modulate the resource grid.

    [txWaveform,waveformInfo] = nrOFDMModulate(carrier,pdschGrid);

Propagation Channel

The propagation channel generates N output samples for an input with N samples. However, the
block of N output samples includes the channel filter transient (K samples). Because the
synchronization stage removes this initial transient, if a slot at the channel output has N samples, N-K
samples remain after synchronization. N-K samples are not enough to decode a slot-worth of data.
Part of the slot samples are in the channel filter delay line and are not flushed yet. To flush all
relevant samples out of the channel filter, pad the input signal with zeros. The maximum delay that
the channel filter introduces affects the size of the padding. The padding accounts for the delay
introduced by all multipath components and the channel filter implementation delay. This figure
shows the need for zero padding before a waveform enters the channel.

Pad the input signal with enough zeros to ensure that the generated signal is flushed out of the
channel filter.
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    chInfo = info(channel);
    maxChDelay = ceil(max(chInfo.PathDelays*channel.SampleRate)) + chInfo.ChannelFilterDelay;
    txWaveform = [txWaveform; zeros(maxChDelay,size(txWaveform,2))];

Send the signal through the channel and add noise.

    [rxWaveform,pathGains,sampleTimes] = channel(txWaveform);
    noise = generateAWGN(SNRdB,nRxAnts,waveformInfo.Nfft,size(rxWaveform));
    rxWaveform = rxWaveform + noise;

Timing Synchronization

You can perform perfect or practical synchronization.

• Perfect synchronization assumes channel knowledge (nrPerfectTimingEstimate). The channel
returns information on path gains and path filters impulse response. You can use this information
to determine the offset that is associated with the strongest multipath component across all
channel snapshots and across all transmit and receive antennas.

• Practical synchronization performs a cross-correlation of the received signal with the PDSCH DM-
RS symbols in the time domain (nrTimingEstimate). In some adverse cases, this cross-
correlation can be weak due to fading or noise, resulting in an erroneous timing offset. The
function hSkipWeakTimingOffset checks the magnitude of the cross-correlation mag. If the
cross-correlation is weak, the function ignores the current timing estimate and instead uses the
previous estimate (offset).

Perform perfect or practical timing estimation and synchronization.

    if perfectEstimation
        % Get path filters for perfect timing estimation
        pathFilters = getPathFilters(channel); 
        [offset,mag] = nrPerfectTimingEstimate(pathGains,pathFilters);
    else
        [t,mag] = nrTimingEstimate(carrier,rxWaveform,dmrsIndices,dmrsSymbols);
        offset = hSkipWeakTimingOffset(offset,t,mag);
    end
    rxWaveform = rxWaveform(1+offset:end,:);

OFDM Demodulation

OFDM-demodulate the synchronized signal.

    rxGrid = nrOFDMDemodulate(carrier,rxWaveform);

Channel Estimation

Channel estimation provides a representation of the channel effects per resource element (RE). The
equalizer uses this information to compensate for the distortion introduced by the channel.

You can perform perfect or practical channel estimation.

• Perfect channel estimation assumes channel knowledge (nrPerfectChannelEstimate). The
perfect channel estimate represents the channel conditions between the transmit and receive
antennas. Because the equalizer requires channel knowledge between the transmit layers and the
receive antennas, you must apply precoding to the perfect channel estimate.

• Practical channel estimation uses the PDSCH DM-RS to estimate the channel conditions and uses
noise averaging and interpolation to obtain an estimate for all REs in the slot. Because the DM-
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RSs are specified per layer, the resulting practical channel estimate represents the channel
conditions between the transmit layers and the receive antennas. The practical channel estimate
includes the effect of the MIMO precoding operation.

This figure shows the reference points of the channel estimates in the downlink processing chain.

Perform perfect or practical channel estimation.

    if perfectEstimation
        % Perform perfect channel estimation between transmit and receive
        % antennas.
        estChGridAnts = nrPerfectChannelEstimate(carrier,pathGains,pathFilters,offset,sampleTimes);

        % Get perfect noise estimate (from noise realization)
        noiseGrid = nrOFDMDemodulate(carrier,noise(1+offset:end ,:));
        noiseEst = var(noiseGrid(:));

        % Get precoding matrix for next slot
        newPrecodingWeight = getPrecodingMatrix(pdsch.PRBSet,pdsch.NumLayers,estChGridAnts);

        % Apply precoding to estChGridAnts. The resulting estimate is for
        % the channel estimate between layers and receive antennas.
        estChGridLayers = precodeChannelEstimate(estChGridAnts,precodingWeights.');
    else
        % Perform practical channel estimation between layers and receive
        % antennas.
        [estChGridLayers,noiseEst] = nrChannelEstimate(carrier,rxGrid,dmrsIndices,dmrsSymbols,'CDMLengths',pdsch.DMRS.CDMLengths);

        % Remove precoding from estChannelGrid before precoding
        % matrix calculation
        estChGridAnts = precodeChannelEstimate(estChGridLayers,conj(precodingWeights));

        % Get precoding matrix for next slot
        newPrecodingWeight = getPrecodingMatrix(pdsch.PRBSet,pdsch.NumLayers,estChGridAnts);
    end

Plot the channel estimate between the first layer and the first receive antenna.

    mesh(abs(estChGridLayers(:,:,1,1)));
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    title('Channel Estimate');
    xlabel('OFDM Symbol');
    ylabel("Subcarrier");
    zlabel("Magnitude");

At this point, you can use the channel estimate to obtain the precoding matrix for transmission in the
next slot. Because this example assumes channel knowledge at the transmitter, you do not need to
calculate the precoding matrix at the receiver end. For an example of how to calculate the precoding
matrix for data transmission based on a channel estimate at the receiver, see “NR PDSCH
Throughput”.

Equalization

The equalizer uses the channel estimate to compensate for the distortion introduced by the channel.

Extract the PDSCH symbols from the received grid and associated channel estimates. The csi output
has channel state information (CSI) for each of the equalized PDSCH symbols. The CSI is a measure
of the channel conditions for each PDSCH symbol. Use the CSI to weight the decoded soft bits after
PDSCH decoding, effectively increasing the importance of symbols experiencing better channel
conditions.

    [pdschRx,pdschHest] = nrExtractResources(pdschIndices,rxGrid,estChGridLayers);
    [pdschEq,csi] = nrEqualizeMMSE(pdschRx,pdschHest,noiseEst);

Plot the constellation of the equalized symbols. The plot includes the constellation diagrams for all
layers.
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    constPlot.ChannelNames = "Layer "+(pdsch.NumLayers:-1:1);
    constPlot.ShowLegend = true;
    % Constellation for the first layer has a higher SNR than that for the
    % last layer. Flip the layers so that the constellations do not mask
    % each other.
    constPlot(fliplr(pdschEq));

PDSCH Decoding

Decode the equalized PDSCH symbols and obtain the soft bit codewords.

    [dlschLLRs,rxSymbols] = nrPDSCHDecode(carrier,pdsch,pdschEq,noiseEst);

Scale the soft bits or log-likelihood ratios (LLRs) by the CSI. This scaling applies a larger weight to
the symbols in the REs with better channel conditions.
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    % Scale LLRs by CSI
    csi = nrLayerDemap(csi);                                    % CSI layer demapping
    for cwIdx = 1:pdsch.NumCodewords
        Qm = length(dlschLLRs{cwIdx})/length(rxSymbols{cwIdx}); % Bits per symbol
        csi{cwIdx} = repmat(csi{cwIdx}.',Qm,1);                 % Expand by each bit per symbol
        dlschLLRs{cwIdx} = dlschLLRs{cwIdx} .* csi{cwIdx}(:);   % Scale
    end

DL-SCH Decoding

Decode the LLRs and check for errors.

    decodeDLSCH.TransportBlockLength = trBlkSizes;
    [decbits,blkerr] = decodeDLSCH(dlschLLRs,pdsch.Modulation,pdsch.NumLayers, ...
        harqEntity.RedundancyVersion,harqEntity.HARQProcessID);

HARQ Process Update

Update the current HARQ process with the resulting block error status, and then advance to the next
process. This step updates the information related to the active HARQ process in the HARQ entity.

    statusReport = updateAndAdvance(harqEntity,blkerr,trBlkSizes,pdschInfo.G);    

Summarize HARQ and decoding information for the present slot.

    disp("Slot "+(nSlot)+". "+statusReport);

Slot 0. HARQ Proc 0: CW0: Initial transmission passed (RV=0,CR=0.482212).
Slot 1. HARQ Proc 1: CW0: Initial transmission passed (RV=0,CR=0.482212).
Slot 2. HARQ Proc 2: CW0: Initial transmission passed (RV=0,CR=0.482212).
Slot 3. HARQ Proc 3: CW0: Initial transmission passed (RV=0,CR=0.482212).
Slot 4. HARQ Proc 4: CW0: Initial transmission passed (RV=0,CR=0.482212).
Slot 5. HARQ Proc 5: CW0: Initial transmission passed (RV=0,CR=0.482212).
Slot 6. HARQ Proc 6: CW0: Initial transmission passed (RV=0,CR=0.482212).
Slot 7. HARQ Proc 7: CW0: Initial transmission passed (RV=0,CR=0.482212).
Slot 8. HARQ Proc 8: CW0: Initial transmission passed (RV=0,CR=0.482212).
Slot 9. HARQ Proc 9: CW0: Initial transmission passed (RV=0,CR=0.482212).
Slot 10. HARQ Proc 10: CW0: Initial transmission passed (RV=0,CR=0.482212).
Slot 11. HARQ Proc 11: CW0: Initial transmission passed (RV=0,CR=0.482212).
Slot 12. HARQ Proc 12: CW0: Initial transmission passed (RV=0,CR=0.482212).
Slot 13. HARQ Proc 13: CW0: Initial transmission passed (RV=0,CR=0.482212).
Slot 14. HARQ Proc 14: CW0: Initial transmission passed (RV=0,CR=0.482212).
Slot 15. HARQ Proc 15: CW0: Initial transmission passed (RV=0,CR=0.482212).
Slot 16. HARQ Proc 0: CW0: Initial transmission passed (RV=0,CR=0.482212).
Slot 17. HARQ Proc 1: CW0: Initial transmission passed (RV=0,CR=0.482212).
Slot 18. HARQ Proc 2: CW0: Initial transmission passed (RV=0,CR=0.482212).

Slot 19. HARQ Proc 3: CW0: Initial transmission passed (RV=0,CR=0.482212).

end % for nSlot = 0:totalNoSlots

Local Functions

function noise = generateAWGN(SNRdB,nRxAnts,Nfft,sizeRxWaveform)
% Generate AWGN for a given value of SNR in dB (SNRDB), which is the
% receiver SNR per RE and antenna, assuming the channel does
% not affect the power of the signal. NRXANTS is the number of receive
% antennas. NFFT is the FFT size used in OFDM demodulation. SIZERXWAVEFORM
% is the size of the receive waveform used to calculate the size of the
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% noise matrix.

    % Normalize noise power by the IFFT size used in OFDM modulation, as
    % the OFDM modulator applies this normalization to the transmitted
    % waveform. Also normalize by the number of receive antennas, as the
    % channel model applies this normalization to the received waveform by
    % default. The SNR is defined per RE for each receive antenna (TS
    % 38.101-4).
    SNR = 10^(SNRdB/10); % Calculate linear noise gain
    N0 = 1/sqrt(2.0*nRxAnts*double(Nfft)*SNR);
    noise = N0*complex(randn(sizeRxWaveform),randn(sizeRxWaveform));
end
    
function wtx = getPrecodingMatrix(PRBSet,NLayers,hestGrid)
% Calculate precoding matrix given an allocation and a channel estimate
    
    % Allocated subcarrier indices
    allocSc = (1:12)' + 12*PRBSet(:).';
    allocSc = allocSc(:);
    
    % Average channel estimate
    [~,~,R,P] = size(hestGrid);
    estAllocGrid = hestGrid(allocSc,:,:,:);
    Hest = permute(mean(reshape(estAllocGrid,[],R,P)),[2 3 1]);
    
    % SVD decomposition
    [~,~,V] = svd(Hest);
    
    wtx = V(:,1:NLayers).';
    wtx = wtx/sqrt(NLayers); % Normalize by NLayers
end

function estChannelGrid = getInitialChannelEstimate(channel,carrier)
% Obtain an initial channel estimate for calculating the precoding matrix.
% This function assumes a perfect channel estimate

    % Clone of the channel
    chClone = channel.clone();
    chClone.release();

    % No filtering needed to get channel path gains
    chClone.ChannelFiltering = false;    
    
    % Get channel path gains
    [pathGains,sampleTimes] = chClone();
    
    % Perfect timing synchronization
    pathFilters = getPathFilters(chClone);
    offset = nrPerfectTimingEstimate(pathGains,pathFilters);
    
    % Perfect channel estimate
    estChannelGrid = nrPerfectChannelEstimate(carrier,pathGains,pathFilters,offset,sampleTimes);
end

function refPoints = getConstellationRefPoints(mod)
% Calculate the reference constellation points for a given modulation
% scheme.
    switch mod
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        case "QPSK"
            nPts = 4;
        case "16QAM"
            nPts = 16;
        case "64QAM"
            nPts = 64;
        case "256QAM"
            nPts = 256;            
    end
    binaryValues = int2bit(0:nPts-1,log2(nPts));
    refPoints = nrSymbolModulate(binaryValues(:),mod);
end

function estChannelGrid = precodeChannelEstimate(estChannelGrid,W)
% Apply precoding matrix W to the last dimension of the channel estimate.

    % Linearize 4-D matrix and reshape after multiplication
    K = size(estChannelGrid,1);
    L = size(estChannelGrid,2);
    R = size(estChannelGrid,3);
    estChannelGrid = reshape(estChannelGrid,K*L*R,[]);
    estChannelGrid = estChannelGrid*W;
    estChannelGrid = reshape(estChannelGrid,K,L,R,[]);

end

See Also

Related Examples
• “Model 5G NR Transport Channels with HARQ” on page 2-41
• “Map 5G Physical Channels and Signals to the Resource Grid” on page 2-49
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5G NR Waveform Generation

This example provides an overview of 5G NR waveform generation workflows and the waveform types
that you can generate using the 5G Toolbox™ product.

Introduction

Using 5G Toolbox features, you can configure and generate these NR waveforms.

• NR test models (NR-TM)
• NR uplink and downlink fixed reference channels (FRCs)
• NR downlink waveforms
• NR uplink waveforms

To configure and generate a waveform with a static set of parameters, you can use either of these
workflows. You can use the waveforms generated with these workflows in test and measurement
applications.

• Use the 5G Waveform Generator app, which provides a user interface (UI) to configure the
waveform. Because 5G waveforms have a large number of parameters, the recommended
workflow for parameterizing a waveform is to use this app. The app enables you to generate the
waveform directly in the app or to export the waveform configuration to MATLAB® to generate
the waveform at the command prompt. The app also enables you to export the waveform
configuration to Simulink™.

• Use the nrWaveformGenerator function, which provides a programmatic interface to configure
the waveform using a configuration object.

To learn how to configure and generate waveforms with dynamically changing parameters (for
example, when modeling a 5G link) see the “NR PDSCH Throughput” and “NR PUSCH Throughput”
examples.

To learn how to configure and generate physical random access channel (PRACH) waveforms, see the
“5G NR PRACH Configuration” and “5G NR PRACH Waveform Generation” examples.

Configure and Generate 5G Waveforms Using the App

The 5G Waveform Generator app provides a UI to manage the large number of configuration
parameters. In the app, you can choose the waveform type, specify the parameters, and generate and
export the waveform. The app also enables you to interact with test and measurement equipment.
This figure shows a common workflow to generate and export a 5G waveform in this app.
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Open 5G Waveform Generator App

Open the 5G Waveform Generator app by clicking the app icon on the Apps tab, under Signal
Processing and Communications.

Choose Waveform Type

In the app, you can select different waveform types. The downlink and uplink options enable you to
fully customize the contents of your waveform. You can also generate NR-TMs, downlink FRCs, and
uplink FRCs.
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Specify Parameters

In the app, you can specify the parameters. When you set the parameters, the app updates the
resource grid visualization content instantly, showing the location of all physical channels in the
waveform. The resource grid view contains a union of the locations of all physical channels over all
ports (that is, the visualization does not differentiate what each port transmits). Because the
maximum resolution of the resource grid is one resource block (RB), the visualization does not show
signals using single resource elements (REs).

This figure shows the configuration of two physical downlink shared channels (PDSCHs). The first
PDSCH spans all slots and uses physical resource blocks (PRBs) 0 to 100. The second PDSCH is
active in slots 0 to 2 and 4 to 6 and uses PRBs 200 to 250.
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Generate Waveform

To generate the configured waveform in the app, click Generate. The app creates the baseband in-
phase and quadrature (IQ) component samples internally in the generator. You can see the spectrum
of the generated signal in the Spectrum Analyzer tab.
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Export Waveform

To export the waveform, click Export and select one of the available options. You can export the
waveform to the workspace, a file, a MATLAB script, or a Simulink model.

• The Export to Workspace option creates a structure in the MATLAB workspace. The structure
contains the waveform samples, sampling frequency, configuration parameters, and a string
describing the waveform type (downlink, uplink, test model, downlink FRC, or uplink FRC). For
example:

• The Export to File option saves the waveform as a .mat or a .bb baseband file.
• The Export to MATLAB Script option creates a MATLAB script. Run the script to generate the
configured waveform at the MATLAB command window.

• The Export to Simulink option generates a Waveform From Wireless Waveform Generator App
block. Use the block as a waveform source in a Simulink model.

Configure and Generate 5G Waveforms Using MATLAB Code

The nrWaveformGenerator function provides a programmatic interface to configure the waveform
using a configuration object. Instead of specifying all parameters manually, which is time consuming,
you can configure the waveform in the 5G Waveform Generator app and export this configuration to a
MATLAB script. You can modify and run this MATLAB script to generate the configured 5G waveform.

Using the app has these benefits.
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• The app includes UI controls, such as drop-down lists to select values.
• Some UI controls include validation when you set custom values.
• The grid visualization capability enables you to see what the signal looks like as you specify the

parameters.

For example, the code example in this section generates a 5G downlink waveform using the
nrDLCarrierConfig configuration object. The code that you generate for a downlink waveform
using the Export to MATLAB Script option in the app also uses the nrDLCarrierConfig
configuration object.

Create a default downlink waveform configuration object. The waveconfig object contains the full
waveform specification and is fully configurable.

waveconfig = nrDLCarrierConfig

waveconfig = 
  nrDLCarrierConfig with properties:

               Label: 'Downlink carrier 1'
      FrequencyRange: 'FR1'
    ChannelBandwidth: 50
             NCellID: 1
        NumSubframes: 10
    WindowingPercent: 0
          SampleRate: []
    CarrierFrequency: 0
         SCSCarriers: {[1x1 nrSCSCarrierConfig]}
      BandwidthParts: {[1x1 nrWavegenBWPConfig]}
             SSBurst: [1x1 nrWavegenSSBurstConfig]
             CORESET: {[1x1 nrCORESETConfig]}
        SearchSpaces: {[1x1 nrSearchSpaceConfig]}
               PDCCH: {[1x1 nrWavegenPDCCHConfig]}
               PDSCH: {[1x1 nrWavegenPDSCHConfig]}
               CSIRS: {[1x1 nrWavegenCSIRSConfig]}

After you set the configuration parameters, call the programmatic waveform generator.

[waveform,waveformInfo] = nrWaveformGenerator(waveconfig);

Plot the spectrogram to visualise the signal in the frequency domain. This waveform includes a full
allocation PDSCH, a physical downlink control channel (PDCCH), and the signal synchronization (SS)
burst.

% Plot spectrogram of waveform for first antenna port
samplerate = waveformInfo.ResourceGrids(1).Info.SampleRate;
nfft = waveformInfo.ResourceGrids(1).Info.Nfft;
figure;
spectrogram(waveform(:,1),ones(nfft,1),0,nfft,'centered',samplerate,'yaxis','MinThreshold',-130);
title('Spectrogram of 5G Downlink Baseband Waveform');
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Change the PDSCH allocation to span PRBs 0 to 10. Generate the waveform and plot the
spectrogram.

waveconfig.PDSCH{1}.PRBSet = 0:10;
[waveform,waveformInfo] = nrWaveformGenerator(waveconfig);

% Plot spectrogram of waveform for first antenna port
samplerate = waveformInfo.ResourceGrids(1).Info.SampleRate;
nfft = waveformInfo.ResourceGrids(1).Info.Nfft;
figure;
spectrogram(waveform(:,1),ones(nfft,1),0,nfft,'centered',samplerate,'yaxis','MinThreshold',-130);
title('Spectrogram of 5G Downlink Baseband Waveform');
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You can define multiple instances of the physical channels and signals. Create a second instance of
the PDSCH configuration object and set the allocation to span PRBs 40 to 50 and OFDM symbols 2 to
10.

mySecondPDSCH = nrWavegenPDSCHConfig;
mySecondPDSCH.PRBSet = 40:50;
mySecondPDSCH.SymbolAllocation = [2 10];

Assign the second PDSCH configuration to the waveform configuration. Generate the waveform.

waveconfig.PDSCH{2} = mySecondPDSCH;
[waveform,waveformInfo] = nrWaveformGenerator(waveconfig);

% Plot spectrogram of waveform for first antenna port
samplerate = waveformInfo.ResourceGrids(1).Info.SampleRate;
nfft = waveformInfo.ResourceGrids(1).Info.Nfft;
figure;
spectrogram(waveform(:,1),ones(nfft,1),0,nfft,'centered',samplerate,'yaxis','MinThreshold',-130);
title('Spectrogram of 5G Downlink Baseband Waveform');
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See Also

Related Examples
• “5G NR Downlink Vector Waveform Generation”
• “5G NR Uplink Vector Waveform Generation”
• “5G NR-TM and FRC Waveform Generation”
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